
Efficient Address Translation for

Architectures with Multiple Page Sizes

Guilherme Cox and Abhishek Bhattacharjee

Department of Computer Science, Rutgers University

{guilherme.cox, abhib}@cs.rutgers.edu

Abstract

Processors and operating systems (OSes) support multi-

ple memory page sizes. Superpages increase Translation

Lookaside Buffer (TLB) hits, while small pages provide

fine-grained memory protection. Ideally, TLBs should per-

form well for any distribution of page sizes. In reality,

set-associative TLBs – used frequently for their energy-

efficiency compared to fully-associative TLBs – cannot (eas-

ily) support multiple page sizes concurrently. Instead, com-

mercial systems typically implement separate set-associative

TLBs for different page sizes. This means that when super-

pages are allocated aggressively, TLB misses may, counter-

intuitively, increase even if entries for small pages remain

unused (and vice-versa).

We invent MIX TLBs, energy-frugal set-associative

structures that concurrently support all page sizes by ex-

ploiting superpage allocation patterns. MIX TLBs boost the

performance (often by 10-30%) of big-memory applications

on native CPUs, virtualized CPUs, and GPUs. MIX TLBs
are simple and require no OS or program changes.

CCS Concepts •Computer systems organization →
Pipeline computing; Multicore architectures

Keywords Virtual memory; TLB; superpages; coalescing

1. Introduction

The operating system’s (OS’) choice of page sizes for an

application’s memory needs critically impacts system per-

formance. Modern processors and OSes maintain multiple

page sizes. Superpages (or large pages) increase Translation

Lookaside Buffer (TLB) hit rates [1, 2, 3]. Small pages pro-

vide fine-grained page protection and permissions [1, 3, 4].

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and

the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.

Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee. Request permissions from permissions@acm.org.

ASPLOS ’17, April 08-12, 2017, Xi’an, China

c© 2017 ACM. ISBN 978-1-4503-4465-4/17/04. . . $15.00

DOI: http://dx.doi.org/10.1145/3037697.3037704

This paper’s objective is to design a TLB that leverages any

distribution of page sizes, with the following properties:

1© Good performance: TLB hardware should not be under-

utilized and conflict misses should be avoided.

2© Energy efficiency: TLBs can consume a significant

amount – as much as 13-15% [5, 6, 7, 8, 9] – of proces-

sor energy. Our design should be energy-efficient.

3© Simple implementation: TLBs reside in the timing-

critical L1 datapath of pipelines, and must be simple to meet

timing constraints. This means that TLB lookup, miss han-

dling, and fill must not be complex.

Meeting all three objectives, while handling multiple

page sizes, is challenging. Meeting 2© means that we use

set-associative rather than fully-associative TLBs. However,

set-associative TLBs cannot (easily) support multiple page

sizes. This is because, on lookup, they need the lower-order

bits of the virtual page number to select a TLB set. But iden-

tifying the virtual page number requires the page size, so

that the page offset bits can be masked off. This presents a

chicken-and-egg problem, where the page size is needed for

TLB lookup, but lookup is needed to determine page size. In

general, industry and academia have responded in two ways,

which compromise 1© and/or 3©.

Split TLBs: Most processor vendors use split (or parti-

tioned) TLBs, one for each page size [11, 12, 10]. This side-

steps the need for page size on lookup. A virtual address can

look up all TLBs in parallel. Separate index bits are used for

each TLB, based on the page size it supports; e.g., the set

indices for split 16-set TLBs for 4KB, 2MB, and 1GB pages

(assuming an x86 architecture) are bits 15-12, 24-21, and 33-

30 respectively. Two scenarios are possible. In the first, there

is either hit in one of the split TLBs, implicitly indicating the

translation’s page size. In the second, all TLBs miss [10].

Unfortunately, while split TLBs achieve 3©, and arguably
2©, they often underutilize TLBs and compromise 1©. The

problem is that if the OS allocates mostly small pages, su-

perpage TLBs remain wasted. On the other hand, when

OSes allocate mostly superpages, performance is (counter-

intuitively) worsened because superpage TLBs thrash while

!"

#!"

$!"

%!"

&!"
&
'
(
"

$
)
(
"

#
*
(
"

)
+,
"

&
'
(
"

$
)
(
"

#
*
(
"

)
+,
"

&
'
(
"

$
)
(
"

#
*
(
"

)
+,
"

-./" 012345!!" -6-.2.467"

8
"9
6
1/
:
1-

2
;
.6
"

<
=
6
14
6
2
7
" >3?+@"AB(C" DE??F"EG?+H67"AB("

Figure 1. Percentage of runtime devoted to address translation,

running natively on Intel Haswell with Linux (green). We assume

cases where the OS allocates only one page size (4KB, 2MB, 1GB)

and when page sizes are mixed. We compare performance against

an ideal case where all TLB resources are well-utilized (blue).

small page TLBs lie unused [13, 14]. Figure 1 quantifies the

extent of the problem, showing the percentage of runtime

that mcf, graph500, and memcached devote to address trans-

lation. Results are collected using performance counters on

Intel Haswell systems with 84GB of memory, running Linux

with the methodology of Sec. 6. We assume that the OS

allocates only a fixed page size (i.e., 4KB, 2MB, 1GB) or

mixed pages. One would expect that using large pages con-

sistently improves performance. In reality, performance re-

mains poor even with, for example, 1GB pages (green bars).

Further, we compare these numbers to a hypothetical ideal

set-associative TLB which can support all page sizes (blue);

the gap with the green bars indicates the performance poten-

tial lost due to poor utilization of split TLBs.

Multi-indexing approaches: In response to this problem,

past work has augmented set-associative TLBs to concur-

rently support multiple page sizes [10, 15]. Unfortunately,

while this does improve 1©, it does so at the cost of 2© and
3©. The central problems, described in Sec. 5.1, are variable

access latencies, increased access energy, and complex im-

plementation. Even in the rare cases when they are imple-

mented commercially, they don’t support all page sizes (e.g.,

Intel’s Haswell, Broadwell, and Skylake L2 TLBs cache

4KB and 2MB pages together but not 1GB pages, which re-

quire separate TLBs [11, 12]).

Our contributions: This work proposes (MIX) TLBs, fast
1©, energy-efficient 2©, and readily-implementable 3© struc-

tures that concurrently support all page sizes. MIX TLBs use

a single set-indexing scheme – the one for small pages (e.g.,

4KB pages on x86) – for translations of all page sizes. While

this simplifies the design, it also presents a problem. We use

bits within the superpage page offset to select a TLB set.

This means that a superpage is mapped to multiple (poten-

tially all) TLB sets, an operation we refer to as mirroring

(see Sec. 3). We overcome this problem, however, by observ-

ing that OSes frequently (though they don’t have to) allocate

superpages (not just their constituent small pages) in adja-

cent or contiguous virtual and physical addresses. We detect

these adjacent superpages, and coalesce them into the same

TLB entry (see Sec. 3). If we coalesce as many, or close to as

many, superpages as the number of mirror copies – which we

usually can in real-world systems – we counteract the redun-

dancy of mirrors, achieving energy-efficient performance.

This paper showcases MIX TLBs, their ease of imple-

mentation, and performance improvements of 10-30%. Us-

ing real-system characterization and careful simulation, we

compare MIX TLBs to traditional set-associative designs,

and previously proposed TLBs for concurrent page sizes

[10, 15]. We also characterize superpage allocation patterns.

Our results focus on Linux, but we’ve also studied FreeBSD

and Solaris. One might initially expect that highly loaded

sytems with long uptimes would be hard-pressed to defrag-

ment memory sufficiently to allocate superpages adjacently.

Indeed, we observe that if system memory is sufficiently

fragmented, OSes rarely generate superpages at all. How-

ever, we also observe that if OSes can generate even a few

superpages, they have usually defragmented memory suffi-

ciently to generate other adjacent and contiguous superpages

too. MIX TLBs outperform their counterparts in both cases.

When superpages are scarce, MIX TLBs use all TLB re-

sources for small pages. When superpages are present, MIX
TLBs seamlessly leverage any distribution of page sizes.

2. Scope of This Work

Systems are embracing workloads with increasing mem-

ory needs and poorer access locality (e.g., massive key-

value stores, graph processing, data analytics, deep learn-

ing frameworks, etc.). These workloads stress hardware TLB

performance; as a result, address translation overheads often

consume 15-30% of runtime today [16, 17, 18, 19, 46].

MIX TLBs also aid virtualized systems, where address

translation is even more pernicious. Virtualized systems

require two dimensions of address translation - guest vir-

tual pages are converted to guest physical pages, which are

then translated to system physical pages [4, 13, 20]. Two-

dimensional page table walks are expensive, requiring 24

sequential memory accesses in x86 systems, instead of the

customary 4 accesses for non-virtualized systems. Virtu-

alization vendors like VMware identify TLB misses as a

major culprit in the performance difference between non-

virtualized and virtualized systems [4, 13, 14].

Finally, vendors have begun embracing shared virtual

memory abstractions for heterogeneous systems made up of

CPUs and GPUs [21, 22, 23, 24, 25, 26, 27, 28], access-

ing a single virtual address space. This allows “a pointer

is a pointer everywhere” simplications of the programming

model [26, 27]. However, now GPUs must also perform ad-

dress translation, just like CPUs. GPU TLBs are critical to

performance as they must service the demands of hundreds

to thousands of concurrent threads [21, 22, 27]. Unfortu-

nately, we find that CPU-GPU systems also suffer from TLB

utilization issues when using multiple page sizes.

!"#$%&'()$

*+&,-'.$$

%&'()$

/012+3'.$

$%&'()$ 4$

4$

5
65
5
5
5
5
$

777$

5
65
5
8
5
5
$

777$

5
65
5
!
5
5
$

777$

5
65
5
9
5
5
$

777$

#$

#5$:$#;$:$<$:$#=;;$

>$

>5$:$>;$:$<$:$>=;;$

#$

#5$:$#;$:$<$:$#=;;$

>$

>5$:$>;$:$<$:$>=;;$

Figure 2. Example address space in an x86-64 architecture. We

show 4KB frame numbers in hexadecimal. For example, translation

B is for a 2MB page, made up of 4KB frame numbers B0-B511.

2MB translations B-C are contiguous.

3. High-Level Approach

We compare MIX TLBs to traditional split TLBs, using the

address space of Figure 2. We show virtual and physical ad-

dress spaces, with translations for small pages (A), and su-

perpages (B-C). Without loss of generality, we assume an

x86-64 architecture with 4KB and 2MB pages (1GB are han-

dled similarly). Note that while we assume 64-bit systems,

our examples show 32-bit addresses to save space. These ad-

dresses are shown in 4KB frame numbers (full addresses can

be constructed by appending 0x000). Therefore, superpage

B is located at virtual address 0x00400000 and physical ad-

dress 0x00000000. Superpages B and C have 512 constituent

4KB frames, indicated by B0-511 and C0-511.

Figure 3 illustrates the lookup and fill operation of MIX
TLBs and contrasts it to split TLBs. In step 1©, B is looked

up. However, since B is absent (both split and MIX TLBs
maintain only A), the hardware page table walker is invoked
2©. The page table walker reads the page table in units of

caches lines; since a typical cache line is 64 bytes, and

translations are 8 bytes, 8 translations (including B and C)

are read in the cache line. Split TLBs then fill B into the

superpage TLB 3©. Unfortunately, there remains no room

for C despite 3 unused small page TLB entries.

MIX TLBs, on the other hand, cache all page sizes. After

a miss 1© and a page table walk 2©, we must fill B in the

correct set. This presents a challenge; since MIX TLBs use

the index bits for small pages (in our 2-set TLB example,

bit 12) on all translations, the index bits are picked from the

superpage’s page offset. Thus, superpages do not uniquely

map to either set. Instead, we mirror B in both TLB sets.

Mirroring presents a problem. Whereas split TLBs main-

tain one copy of a superpage translation, MIX TLBs main-

tain several mirror copies, reducing effective TLB capacity.

However, MIX TLBs counteract this problem with the fol-

lowing observation – OSes frequently (though they don’t

have to) allocate superpages adjacently in virtual and phys-

ical addresses. For example, Figure 2 shows that B and C
are contiguous, not just in terms of their constituent 4KB

frames (e.g., B0-511 and C0-511) but also in terms of the

full superpages themselves. MIX TLBs exploit this contigu-

ity; when page table walkers read a cache line of translations
2©, adjacent translations in the cache line are scanned to de-

!"#$%"&"

#$%"'"

("#$%"&"

)*("+,-$"./(" 01("+,-$"./("

#234%"./(5" 167"./(5"

+,-$".,83$"9,3:$;"

<)("=,=>$"34?$"

(" @"

'"

0"

A"

!" (B@"

(B@"

#$%"&"

#$%"'"

+,-$".,83$"9,3:$;"

<)("=,=>$"34?$"

(" @"

'"

0"

A"@C,3$5=4?-"/C-4="

)"

Figure 3. Superpage B lookup and fill for split versus MIX TLBs.

!" #$%"

#$%"

&'(")"

&'("*"

#)+"#,+"#-+"."+"#/*)"

%)+"%,+"%-+"."+"%/*)""

#*+"#0+"#/+"."+"#/**"

%*+"%0+"%/+"."+"%/**""

Figure 4. Though superpages B and C are maintained by multiple

sets but on lookup, we only probe the set corresponding to the 4KB

region within the superpage that the request is to.

tect contiguous superpages. We propose, similar to past work

[16, 17], simple combinational coalescing logic for this 3©.

In our example, B and C are contiguous and are hence co-

alesced and mirrored. Coalescing counteracts mirroring. If

there are as many contiguous superpages as there are mir-

ror copies (or close to as many), MIX TLBs coalesce them

to achieve a net capacity corresponding to the capacity of

superpages, despite mirroring.

Crucially, Figure 4 shows that MIX TLB lookup remains

simple. While coalesced mirrors of superpages reside in

multiple sets, lookups only probe one TLB set. In other

words, virtual address bit 12 in our example determines

whether we are accessing the even- or odd-numbered 4KB

regions within a superpage; therefore accesses to B0, B2,

etc., and C0, C2, etc., are routed to set 0.

Naturally, this overview presents several important ques-

tions. We briefly address them below:

Why do MIX TLBs use the index bits corresponding to

the small pages? Specifically, one may instead consider

using the index bits corresponding to the superpage and

apply that on small pages too. In our example, this would

be like using virtual address bit 21 as the index (assuming

we base the index on 2MB superpages). The advantage of

this approach is that each superpage maps uniquely to a set,

eliminating the need for mirrors (e.g., B maps to set 0, and

C maps to set 1).

Unfortunately, this causes a different problem. Now, spa-

tially adjacent small pages map to the same set. For example,

if we use the index bits corresponding to a 2MB superpage

(i.e., in our 2-set TLB example, bit 21), groups of 512 adja-

cent 4KB virtual pages map to the same set. Since real-world

programs exhibit spatial locality, this elevates TLB conflicts

(unless associativity exceeds 512, which is far higher the 4-8

way associativity used today [11, 12]). One could envision

coalescing these small pages if the OS does allocate them

contiguously in virtual and physical addresses; however past

work shows that while small pages can be contiguous, they

usually are not contiguous beyond more than tens of pages

[16, 17]. We have evaluated using superpage index bits and

have found that they increase TLB misses by 4-8× on aver-

age, compared to using small page index bits.

Why do MIX TLBs perform well? MIX TLBs are well uti-

lized for any distribution of page sizes. When the system

is highly fragmented and superpages are scarce, all TLB re-

sources can be used for small pages. When the OS can gener-

ate superpages, it usually sufficiently defragments physical

memory to allocate superpages adjacently too. MIX TLBs
utilize all hardware resources to coalesce these superpages.

How many mirrors can a superpage produce and how

much contiguity is needed? Assume that the superpage

has N 4KB regions, and that our MIX TLB has M sets. N
is 512 and 262144 for 2MB and 1GB superpages. Practi-

cal commercial L1 and L2 TLBs tend to have 16-128 sets

[10, 11, 12]. Therefore, today’s systems have N >M, mean-

ing that a superpage has a mirror per set (orN mirrors). How-

ever, if future systems see N<M, there would be M mirrors.

Ultimately, good MIX TLB utilization relies on super-

page contiguity. If the number of contiguous superpages is

equal (or sufficiently near) the mirror count, performance

is good. On modern 16-128 set TLBs, we desire (close to)

16-128 contiguous superpages. Sec. 7.1 shows that real sys-

tems do frequently see this much superpage contiguity. Sec.

4 shows how we can coalesce these many contiguous super-

pages, despite only scanning for contiguity within a single

cache line, which maintain 8 translations, on a TLB miss.

4. Hardware Details

We now detail MIX TLB hardware, implementing them dif-

ferently for the L1 and L2 levels. L1 MIX TLBs must be

simple and fast; we sacrifice some coalescing opportunity to

meet these requirements. L2 MIX TLBs can tolerate higher

access latencies (e.g., Intel and AMD L2 TLBs usually have

5-7 cycle access times [10]). Therefore, L2 MIX TLBs sup-

port more coalescing with (slightly) more complex hard-

ware. MIX TLBs require no OS or application changes.

4.1 MIX TLB Entries

MIX TLB entries are similar to traditional set-associative

entries. We detail the modest differences between the two.

Although actual x86-64 architectures can use up to 52-bit

physical addresses, use assume 48-bit physical addresses in

our example for simplicity. Extending this approach to 52-

bits parallels our example.

Small pages: Figure 5 contrasts traditional TLB and MIX
TLB entries for 4KB pages. We use translation A from

!"#$%&%'(#)*+,-+.*!+/*0(&"12

!#3*456*78*9*:;:::::**<**=#&#*45>*78*9*:;::6::*2

6?/*!"#(@)#&%'(*A2

B%C0*4.78*9*::**<*!#3*456*78*9*:;:::::**<**=#&#*45>*78*9*:;::6::*2

DEF*!+/*+,-+.*!+/*0(&"12

Figure 5. Traditional TLB and MIX TLB entries for the transla-

tion corresponding to 4KB page A. We show the TLB entries at the

L1 and L2 level, assuming both have 4 sets. MIX TLBs require just

an additional 2 bits to record the page size.

!"#$%&%'(#)*+,-+.*!+/*0(&"1*2'"*/3

!#4*5.6*78*9*:;::::.**<**=#&#*5.>*78*9*:;:::::*3

.?/*!"#(@)#&%'(@*/*A*B3

C%D0*5.78*9*:,**<*!#4*5.E*78*9*:;::::,*<*/%&F#G*5.*789*:7,,*<**=#&#*5.>*78*9*:;:::::3

?HI*!+/*+,*!+/*0(&"1*2'"*/*#($*B3

!"#$%&%'(#)*+,-+.*!+/*0(&"1*2'"*B3

!#4*5.6*78*9*:;::::J**<**=#&#*5.>*78*9*:;::::,*3

C%D0*5.78*9*:,**<*!#4*5.E*78*9*:;::::,*<*+0(4&K*5.*78*9*:7,:*<**=#&#*5.>*78*9*:;:::::*3

?HI*!+/*+.*!+/*0(&"1*2'"*/*#($*B3

Figure 6. Traditional TLB and MIX TLB entries for the transla-

tion corresponding to 2MB pages B-C. L1 MIX TLB and L2 MIX

TLB entries use a bitmap and a length field to record contiguous

superpages, respectively. We assume 2-set TLBs.

Figure 2, and assume 4-set L1 and L2 TLBs. Therefore,

the two least significant bits of the virtual page need not be

stored in the tag. MIX TLBs only require a 2-bit page size

field to distinguish among the 3 page sizes. Though they are

not shown, the entries also maintain page permission bits.

Superpages: Figure 6 compares traditional to MIX TLB
entries for superpages, assuming 2-set TLBs. Aside from

the page size, MIX TLBs must maintain information about

coalesced superpages. L1 entries use a bitmap for this. 2-

set MIX TLBs maintain a 2-bit bitmap to record coalescing

information of up to two superpages. Furthermore, since this

entry caches superpage information, it uses 9 fewer tag bits

for this versus small page entries. In fact, we can even drop

a 10th bit because 2-bit bitmaps implicitly store information

about 2×2MB (4MB) memory regions. These bits can be

repurposed for the bitmap. Figure 6 records 0b11 to indicate

information about contiguous superpages B and C.

L2 MIX TLBs record longer contiguity, with marginally

greater complexity. Instead of a bitmap, we use a contiguity

length field. Therefore, a 2-bit length field (though it could

use more bits) records contiguity of up to 4 superpages.

MIX TLBs are only marginally bigger than a standard

set-associative entry since the bitmap and length fields are

!"#$%&'(()*))+"#,)-.$(/)*)012232)-.$(4'/5)*)-67,8$/()*)%9:);<<=,>$//'4?

@12>A"B)C772,==?

!" #$%"

#$%"

&'(")"

&'("*"

0-D)!E:?

*"

*"

"

"
(0:)*)!"#$)484/*)):1>F"G$)4H//*).">"$)4844?

+"

,"

I)@C)!"#J?," -'."

:1>F"GK+"#,)-.L)I)/)J?

/"

/"

-'."

.">")*)012232)-.)*)-67,8)*)%9:);<<=,>?0" +MN=1O"B)C772,==?

Figure 7. L1 MIX TLB lookup and hit (assuming a 2-set TLB).

The physical address is found using bit shifting and concatenation.

repurposed with unused tag bits. Only a 2-bit page size field

is added, increasing per-entry size by less than 1%.

Alignment restrictions: To simplify MIX TLB hardware,

we only coalesce superpages that are suitably aligned.

Specifically, to coalesce up to N superpages, only contigu-

ous superpages that begin at virtual address boundaries of

N may be coalesced. Our MIX TLB example in Figure 6,

which coalesces up to 2 superpages, therefore only coalesces

superpages that begin at multiples of 2×2MB or 4MB. This

does reduce coalescing opportunity slightly, but as we show

in Sec. 7.2, performance continues to be good.

Bitmap versus length: For the same number of bits, length

fields record more information, allowing L2 MIX TLBs to

coalesce longer runs of contiguous superpages. The slight

downside is the slightly more complex TLB lookup this

prompts (which we detail later in this section). L1 bitmaps

do have one more advantage – they can record information

about “holes” in contiguously allocated superpages.

4.2 MIX TLB Operation

In this section, we describe MIX TLB operation, including

hits, misses, and fills.

L1 lookup: Figure 7 shows how L1 MIX TLBs are looked

up. Since 4KB page lookups remain unchanged, we focus on

superpages. Index bits are selected from the virtual address

as per small page size – therefore, assuming a 2-set TLB and

4KB small pages, we use bit 12 as the index. Consequently,

there is a question as to what happens with the remainder

of the 2MB page offset, bits 20-13, and bits 11-0. We call

bits 20-13 the mirror ID, as they identify individual 4KB

regions within a superpage (i.e., B0, B1, B2, etc., in Figure

4). Bits 11-0 are the offset within these 4KB regions. Finally,

the remaining upper order bits of the virtual address are split

into a tag and a page ID. The page ID identifies the specific

superpage within a contiguous bundle – since our example

assumes a 2-set TLB that can coalesce up to 2 entries, 1 page

ID bit suffices to identify the desired superpage.

The index bits identify the MIX TLB set 1©. In our ex-

ample, we cache A and B-C in the set, so both entries are

checked in parallel. The page size determines whether the

entry is a coalesced superpage bundle 2©. Then the tag is

compared to the virtual address tag 3©. If there is a match
4©, the L1 bitmap must be checked to determine whether

this superpage exists in the coalesced entry. This is accom-

plished by indexing the bitmap using the page ID; in our

example with B-C, this is set. Therefore, the physical ad-

dress can be constructed by concatenating the relevant fields

of the lookup virtual address with the data field in the MIX
TLB entry 5©.

Note that this process essentially leaves lookup latency

unchanged from the conventional TLB because it relies

purely on bit shifts and concatenations.

L2 lookup: For L2 MIX TLB lookups, instead of checking

a bitmap, the length field is checked against comparators

to determine whether the desired virtual page falls within

in the range of coalesced translations. Range matches (and

their implementation) are well studied [16, 29]. On a range

(and hence TLB) hit, the hardware computes the offset of

the lookup virtual page against the tag information stored.

This offset is added to the TLB entry’s data field, calculating

the desired physical address, similar to recent work [16, 29].

This does increase the L2 lookup latency; however we’ve

modeled the hardware (see Sec. 6) and found that there is

only a slight (i.e., 3% increase) in lookup time.

Miss and fill: Section 3 sketched how MIX TLB are filled.

By scanning for contiguous superpages and coalescing only

on TLB misses, the coalescing logic is placed off the critical

path of lookup. Therefore, it has low overhead, can be de-

signed with simple combinational logic, and adds negligible

latency or energy over a baseline set-associative TLB.

Prefetching and capacity strategies: Superpages provide

two benefits. First, they record information about a far big-

ger portion of memory than small pages; hence, they reduce

TLB conflict misses. However, they also provide prefetch-

ing benefits. For example, a TLB fill of a 2MB superpage

obviates the need for 512 separate fills for 4KB pages.

This observation informs the way MIX TLBs coalesce.

At first blush, one might consider only filling superpage in-

formation into the set that was probed by the lookup virtual

address. For example, suppose that in Figure 4, there is a

lookup for superpage B, but to the B0 region specifically.

On a TLB miss, one option might be to only fill superpage

information into set 0. To be sure, this does capture some of

the prefetching benefits of superpages (i.e., information for

B2, B4, etc., are also filled), but it also loses prefetching po-

tential for some 4KB regions (i.e., B1, B3, etc.). For this rea-

son, we instead fill as many sets as necessary with superpage

mirrors to capture information about the full superpage.

In fact, our notion of prefetching goes beyond the prefetch-

ing benefits of superpages, because coalescing actually

!"#$%"

#$%"

&'(")"

&'("*"

*"

#$%"

+"
,'-."/""

01'("*2""

/"

!"#$%"

3"
,'-."4""

01'("*2""

4"

!"#$%"

/"

#$%"

5"
,'-."#*""

01'("*2""

#$%"&'(")"

&'("*" 4"

#$%"

#$%"

6"
,'-."%)"

01'(")2""

#$%"

4"

Figure 8. Replacement decisions are made independently on mir-

ror copies, which can cause duplication issues.

prefetches contiguous superpages around the requested su-

perpage. To do this without complicating the page table

walker, we prefetch (by coalescing) only contiguous super-

pages that sit in the same cache line as the page table trans-

lation (up to 8 superpages, see Figure 3). Note, however,

that commercial Sandybridge/Haswell TLBs maintain 16-

128 sets; this means that MIX TLBs should try to coalesce

16-128 superpages to offset mirroring. One needs to scan

additional cache lines containing the page table to do this.

Instead, we choose a simpler approach. We initially coalesce

up to 8 superpage entries. When future memory references

touch superpages adjacent to these coalesced entries, sitting

in other cache lines, we detect this behavior and coalesce

them into the existing MIX TLB entry. This achieves good

performance in practice.

4.3 Interactions with Replacement Policies

One issue with MIX TLBs is that information for the same

superpages are now distributed among multiple TLB sets.

Figure 8 illustrates the challenges this brings up. We show a

2-set, 4-entry MIX TLB, explicitly indicating each set’s LRU

chain. Suppose that initially 1©, it stores information about

A and B-C. Now, requests for D and E, small pages mapping

to set 1, arrive and are filled into the TLB in steps 2© and
3©. At this point, set 1’s mirror copy of B-C is evicted, while

set 0’s copy remains. This presents a problem in 4©, when

we have a request for superpage B but in 4KB region B1,

which maps to set 1. We see a TLB miss, and walk the page

table; however, once we locate B-C, an important question is

whether to mirror B-C into the other sets. On the one hand,

the other sets may already have copies of B-C and blindly

mirroring leads to duplicate copies. On the other hand, a

TLB maintains 64-128 sets; scanning all the sets to check for

duplicates is an energy-expensive and impractical approach.

Therefore, we adopt the first approach; 4© shows that this

leads to a duplicate B-C copy in set 0, evicting A. However,

we can mitigate this problem when set 0 is probed in the

future 5©. Since all the entries in the set are checked for a

tag match, we identify duplicates and eliminate copies.

4.4 OS Operations

Invalidations: The OS may change page table mappings

through program execution and corresponding TLB entries

must be invalidated. For small pages, this is achieved in

the same way as conventional TLBs. For superpages, this is

accomplished in L1 MIX TLBs by resetting the bitmap bit of

the superpage in question. This permits superpages adjacent

to the invalidated superpage to remain cached.

On L2 MIX TLBs however, this is slightly more com-

plicated, because they maintain a length field. The simplest

approach is to invalidate the entry corresponding to the en-

tire coalesced bundle. A more sophisticated approach might

split the entry into two separate entries around the invali-

dated translation. Since we find, in practice, relatively few

invalidations, we take the (slightly) lower performance but

simpler approach of invalidating the entire coalesced entry.

Permission bits: An important question is whether to coa-

lesce adjacent superpages that use different access permis-

sion bits. While this could be accomplished with more stor-

age in the MIX TLB to record differing permissions, we take

the simpler (but high-performance) approach of only coa-

lescing superpages when they have the same permission bits.

Dirty and access bits: Translations in page tables maintain

access and dirty bits to aid the OS’ page replacement policy.

In some (though not all) architectures, like x86 and ARM,

these bits are set by hardware, and read by the OS.

The x86 architecture mandates that only translations with

access bits set to 1 in the corresponding page table entry may

be filled into the TLB [30]. MIX TLBs therefore coalesce

only translations with access bits set to 1 on TLB fill. Nat-

urally, this does not preclude translations from being added

to existing coalesced entries in the TLB once they are de-

manded by the processor and have their access bits set.

Page table entries also maintain a dirty bit, recording

whether the page has been written to. Conventional TLBs

maintain a dirty bit per entry; on a store instruction to the

translation in the entry, this bit is checked. If the bit is 0, the

hardware page table walker injects a micro-op instruction to

write the software page table entry’s dirty bit [30, 31, 32]. If

the bit is 1, such updates are not needed.

On the one hand, MIX TLBs could maintain a dirty bit per

superpage in a coalesced bundle. However, MIX TLBs sup-

port 16-128 superpages per coalesced bundle; requiring 16-

128 dirty bits per TLB entry requires infeasible storage. On

the other hand, we could require that only superpages with

the same dirty bit value be coalesced; unfortunately, we’ve

found that this drastically reduces coalescing opportunity.

Instead, our approach sets the MIX TLB entry dirty bit

only if all the superpages in a coalesced bundle are dirty. If

a single one of them is not dirty, the TLB entry’s dirty bit

is cleared. In practice, this means that every time there is

a TLB miss and page table lookup, we check to see if the

requested PTE’s dirty bit is set. If it is clear, and the MIX

TLB entry where this translation is to be coalesced has its

dirty bit cleared (if it is not already clear). If it is set, the dirty

bit of the MIX TLB entry is left unchanged. That is, if it was

already dirty, it is left dirty again. Naturally, this approach

adds cache traffic versus a scenario where the TLB has a

dirty bit per translation. In practice though, we’ve found that

performance remains good, and area overheads are modest.

4.5 Hardware and Energy Complexity

MIX TLBs are readily-implementable. As detailed, the size

of each MIX TLB entry is roughly 1% bigger than a stan-

dard set-associative TLB. We’ve modeled these overheads

using CACTI [33], and find that lookup latency and energy

remains unchanged. MIX TLB misses do invoke coalescing

logic; however, like prior work [16, 17, 19], we find that this

requires only simple combinational logic. While it does im-

pose (slight) delay overheads on TLB fill, we have modeled

these overheads in RTL and find that they do not affect over-

all performance. Furthermore, while it is true that coalescing

logic uses some area, MIX TLBs eliminate the need for sep-

arate superpage TLBs. Therefore, we ultimately save area.

Finally, we consider the energy costs of mirroring. Mir-

roring (coalesced) superpages into multiple sets does con-

sume more energy than conventional TLBs, which fill one

set. Modeling this using CACTI and RTL, however, we

find that the much higher hit rates offered from MIX TLBs
greatly reduce memory and cache references (for page table

walks) and reduce runtime. Ultimately, the resulting energy

benefits outweigh the energy overheads of mirroring.

5. Comparison to Past Work

MIX TLBs present a counterpoint to split set-associative

TLBs. However, prior work has looked at alternate ways

to provide mixed page support too. We now detail this past

work, showing why MIX TLBs are superior.

5.1 Multi-Indexing Methods

Recent approaches to tackling the inadequacies of split set-

associative TLBs can be summarized into three categories:

Hash-rehashing: We initially perform a TLB lookup (hash)

assuming a particular page size (usually the baseline page

size). On a miss, the TLB is again probed (rehash), us-

ing another page size. This continues until all page sizes

are exhausted [10]. There are several drawbacks to this ap-

proach. TLB hits have variable latency, and can be diffi-

cult to manage in the timing-critical L1 datapath of modern

CPUs [34], while TLB misses take longer. One could par-

allelize the lookups but this adds lookup energy, and com-

plicates port utilization. Consequently, hash-rehashing ap-

proaches are used in only a few architectures, and that too,

to support only a few page sizes (e.g., Intel Skylake and

Haswell architectures support 4KB and 2MB pages with this

approach but not 1GB pages).

Skewing: Skewed TLBs are inspired by skewed associative

caches [15, 35, 36]. A virtual address is presented to multiple

parallel hashing functions. The functions are chosen so that

if a group of translations conflict on one way, they conflict

with a different group on other ways. Translations of differ-

ent page sizes reside in different sets [15]. For example, if

our TLB supports 3 page sizes, each cacheable in 2 separate

ways, we need a 6-way skew-associative TLB.

Skew associative TLBs can be effective but also have

problems. Lookups expend high energy as they require par-

allel reads equal to the sum of the associativities of all sup-

ported page sizes. Saving energy by reducing the associa-

tivity of page sizes decreases performance. Further, even

the simplest skewing functions are usually not appropri-

ate for latency-sensitive L1 TLBs [37, 38]. Finally, good

TLB hit rates require effective replacement policies; unfortu-

nately, skewing breaks traditional notions of set-associativity

and requires complicated replacement decisions. In practice,

skewed TLBs use area- and energy-expensive timestamps

for replacement [37, 38]. Because of these problems, we

know of no commercial skew-associative TLBs.

Prediction-based enhancements: Recent work [10] en-

hances hash-rehashing and skewing by using a hardware

predictor to accurately guess the page size of a requested

translation before TLB lookup. The hash-rehash or skew

TLB is first looked up with this predicted page size; only

on misses are the other page sizes used. When prediction is

accurate, this approach lowers the average TLB hit latency

and lookup energy, by first looking up with the “correct”

page size. Problems remain with this approach. Predictors

become complex as the number of page sizes increase. Fur-

ther, predictors increase access latency variability since we

now also have different latencies for hits with correct pre-

diction, eventual hits after a wrong prediction, etc.

Overall, multi-indexing is complex, latency-variable, and

can be energy-intensive. It is generally unsuitable for L1

TLBs. Even when implemented, it can scale poorly as the

number of page sizes increase. In addition multi-indexing

potentially complicates operations like TLB shootdowns,

selective invalidations of global versus local translations,

managing locked translations, etc., because of their multi-

step lookup [10]. Instead, since MIX TLBs remain largely

unchanged in implementation compared to standard set-

associative TLBs, they do not suffer from these issues.

5.2 Prior Work on Page Allocation Contiguity

The concept of exploiting OS page allocation for better TLB

performance has received recent attention [2, 16, 17, 18, 19,

34]. COLT [16] shows that small pages are often allocated

contiguously in virtual and physical memory. These contigu-

ous small pages are coalesced into 4KB TLBs for better per-

formance. This builds on earlier work [2] which exploited

certain patterns of page allocation contiguity and alignment.

We make two observations about MIX TLBs and their re-

lationship with COLT. First, they solve a problem that COLT
cannot – realizing a single set-associative TLB to cache mul-

tiple page sizes. Second, COLT observes that there are cases

when small pages are allocated more frequently than super-

pages. In these cases, coalescing small pages helps TLB per-

formance. Our work also observes that there are situations

where superpages are hard to allocate. We provide orthogo-

nal benefits to COLT in these cases, by utilizing TLB entries

that would otherwise have been devoted only to superpages.

In addition, unlike COLT, we also help performance in the

numerous cases when superpages abound. Indeed, for these

reasons, COLT can actually be combined with MIX TLBs
(see Sec. 7.2).

6. Methodology

We use a mix of real-system measurements, memory tracing,

and detailed simulation. We now describe these approaches.

6.1 Real-System CPU Measurements

To assess real-system split TLB performance and OS page

allocation patterns, we use a dual-socket Intel processor with

4-way set-associative split TLBs for 4KB pages (64 en-

tries) and 2MB pages (32 entries). 1GB L1 TLBs are fully-

associative and 4 entries. We use a 512-entry L2 TLB for

4KB and 2MB pages, but not 1GB pages. Instead, there is a

separate 32-entry L2 TLB for 1GB pages. Further, this sys-

tem is equipped with a 24MB LLC and 80GB of memory.

We focus on Linux (kernel 4.4.0) but we’ve also run

FreeBSD and Solaris and found similar results. Furthermore,

our virtualization studies focus on KVM; however, we have

also run VMware ESX and see similar results.

6.2 CPU Simulations and Analytical Models

To evaluate MIX TLBs, we need to go beyond existing hard-

ware platforms. Unfortunately, current cycle-accurate sim-

ulators cannot run fast enough to collect meaningful data

for all the long-running, big-data workloads (with multi-

ple OSes, and hypervisors) we require for our CPU studies.

Therefore, like most recent work on TLBs [13, 16, 18, 19,

29, 34, 39], we use a combination of tracing, performance

counter measurements, functional cache hierarchy and TLB

simulations, and anaytical modeling to estimate overall im-

pact on program execution time. We use Pin [40] to collect

memory traces. We extend Pintools with Linux’ pagemap to

include physical addresses with the virtual addresses that Pin

normally generates. We select a Pinpoint region of 10 billion

instructions and correlate traces with performance counter

measurements to verfiy that the sampled region is represen-

tative of the workload.

These traces are passed to a functional simulator – used

to assess TLB and cache hit rates – that models multi-level

TLBs, hardware page table walkers, and a cache hierarchy.

Our baseline is a split TLB hierarchy from Intel Haswell

systems; further, we model area-equivalent hash-rehash and

skewed TLBs, with prediction-based enhancements. Finally,

we model an area-equivalent MIX TLB hierarchy.

We use the hit rates from our functional simulation to, like

past work [13, 16, 18, 19, 29, 34, 39], feed into an analytical

model that uses the performance counter data to weight the

performance impact of TLB hits, misses, and cache accesses.

6.3 GPU Simulation

Our GPU studies use cycle-level CPU-GPU simulation

based on gem5-gpu, running Linux, and modeling an x86

architecture. Like recent work [21, 22, 23], we model 128-

entry, 4-way set-associative TLBs for 4KB pages per shader

core. We also model split TLBs for 2MB pages (32-entry,

4-way) and 1GB pages (4-entry, fully-associative).

6.4 Workloads

Our CPU studies use two sets of applications. The first con-

sists of all workloads from Spec and Parsec [41]. We scale

the inputs of these workloads so that their total memory

footprint is roughly 80GB. The second set uses big-memory

workloads (e.g., gups, graph processing, memcached, work-

loads from Cloudsuite [42]), also tuned to 80GB.

Our GPU studies, like recent studies [21, 22, 23] use

workloads from Rodinia [43]. Ideally, our GPU studies

should use the same big-memory sizes as our CPU stud-

ies, but this makes simulations infeasibly slow. We therefore

scale our inputs to 24GB memory footprints.

7. Evaluation

We now present an evaluation of MIX TLB in two steps

– first, a study of OS page allocation patterns and second,

quantification of the benefits of MIX TLBs.

7.1 OS Page Allocation Characterization

Several factors affect the OS’ page size distribution. For

example, suppose we run Linux with transparent hugepage

support (THS) [44]. As the program makes memory alloca-

tion requests (e.g., malloc(), or mmap()), the OS earmarks

virtual pages, using its virtual memory area data structure

[45]. If these requests are to large amounts of memory, sev-

eral contiguous virtual pages are reserved. Virtual pages are

lazily allocated physical pages, as the program page faults

through the virtual pages. The OS consults its free pool of

physical pages for this. THS tries to defragment memory

sufficiently to maintain swathes of contiguous free physical

pages. If there is enough free physical memory for super-

pages, THS can assign 2MB physical pages to 2MB regions

of virtual addresses, generating superpages. Further, if the

program page faults through the virtual pages in ascending

order, they are handed contiguous physical pages.

Instead of THS, Linux can also use libhugetlbfs. This is

a special library that administrators or programmers have to

explicitly link to [29]. Users can specify a superpage pref-

erence (e.g., 2MB or 1GB). At link time, programs reserve

!"

#!"

$!"

%!"

&!"

'!!"

()"

+,)-"

+,)-"

.#!/0"

+,)-"

.$!/0"

+,)-"

.%!/0"

+,)-"

.&!/0"

+,)-"

.1!/0"2
34
56
)
7
")
8"
9
+
*
)
3:
"

2
)
)
;<
3=
7
;"

(46>+"?@A".@43B+5"C"D<+50" (46>+"?@A".E=-F9+*)3:0" G@A"

Figure 9. Fraction of memory footprint occupied by superpages,

as fragmentation varies. Results shown for native CPUs and GPUs.

a pool of memory. Superpages are allocated from this pool;

when this pool is used up, small pages are allocated from

other memory locations. Like THS, libhugetlbfs relies on

lazy physical memory allocation and OS degfragmentation

of physical memory.

Page size distributions: Figure 9 quantifies the page dis-

tributions we see on our real-system CPU and GPU exper-

iments, both running Linux. The graphs show the fraction

of total memory footprint backed by superpages (both 2MB

and 1GB). As we have detailed, physical memory fragmen-

tation impacts the frequency of superpage allocation. There-

fore, we vary the level of memory fragmentation by run-

ning the microbenchmark memhog [16, 17], which allocates

memory randomly across a fraction of system memory, in

the background. For example, memhog (40%) on the x-axis

indicates that memhog is fragmenting 40% of the 80GB sys-

tem memory in the background. We show average numbers

for classes of workloads (e.g., Parsec + Spec, big-memory

workloads) as per-workload numbers follow these trends.

Figure 9 shows three regimes of page distributions.

Superpages dominate: With moderate amounts of memory

fragmentation, superpages cover most of the application’s

memory needs. For example, even with memhog fragment-

ing 40% of physical memory, more than 80% of a CPU’s or

GPU’s workload is covered with superpages, on average.

Neither small pages nor superpages dominate: When mem-

ory fragmentation further increases, the memory footprint

is more equally divided among small pages and superpages.

For example, memhog with 60% finds that 40-60% of CPU,

and 55% of GPU footprints are backed by superpages.

Mostly small pages: When fragmentation becomes severe,

the bulk of the memory footprint is backed with small pages.

Figure 10 shows that similar trends hold for virtualized

workloads. To create memory fragmentation and system

load, we first consolidate as many VMs on the same ma-

chine as possible. Each consolidated VM is provided 10GB

of memory; therefore, 8 of them use up all 80GB of available

physical memory. In addition, we run memhog within each

VM, fragmenting a percentage of each VM’s footprint. We

!"
#!"
$!"
%!"
&!"

'!!"

'
"(
)
*!
"+

,
"

'
"(
)
*$
!
"+

,
"

'
"(
)
*&
!
"+

,
"

$
"(
)
*!
"+

,
"

$
"(
)
*$
!
"+

,
"

$
"(
)
*&
!
"+

,
"

&
"(
)
*!
"+

,
"

&
"(
)
*$
!
"+

,
"

&
(
)
*&
!
"+

,
"

-
./
01
2
3
"2
4"
)
5
+
2
.6
"

-
2
2
78
.9
3
7"

Figure 10. Fraction of memory footprint occupied by superpages,

as a function of the memory fragmentation and VM consolidation.

Results are for virtualized CPU workloads. N VM: M mh stands for

N consolidated VMs, each with memhog running at M%.

expect that higher VM consolidation and more aggressive

memhog use will reduce the frequency of superpages.

Figure 10 shows that OSes running in VMs can counter

non-trivial amounts of memory fragmentation, producing

lots of superpages. For example, even 4VMs with memhog
of 40% each, see more than 70% of memory is allocated in

superpages. Naturally, as system load increases, small pages

dominate. For example, like recent work [4, 47, 48], we find

that as more VMs are in the system and memory pressure

increases, optimizations like page sharing [48] and NUMA

migrations [49] preclude heavy use of superpages.

Overall, this data suggests many system factors influence

page size distributions, and therefore, systems experience a

variety of such distributions. It is therefore vital to imple-

ment efficient TLB support for mixed page sizes.

Contiguous superpages characterization: MIX TLBs rely

on contiguity among superpages when they are present. Fig-

ure 11 quantifies the amount of superpage contiguity for the

workloads and configurations from Figures 9-10 where at

least one superpage is present. Figure 11 quantifies aver-

age contiguity per workload (numbered in ascending order

of superpage contiguity on the x-axis). Average contiguity is

measured as follows. We scan the entire page table and iden-

tify runs of contiguous superpages. We divide this contiguity

by the number of translations. For example, suppose we have

a page table with 4 entries, where the first 2 translations are

singletons, but the last two are contiguous. We calculate that

the average contiguity is (1 + 1+ 2× 2)/4. We separate re-

sults for 2MB superpages and 1GB superpages, varying the

amount of memory fragmentation using memhog.

Figure 11 shows that superpages themselves – and not

just their constituent 4KB page regions – are usually al-

located contiguously in virtual and physical addresses. For

example, consider memhog fragmenting 20% of physical

memory. Figure 11 shows that most benchmarks have aver-

age 2MB page contiguity greater than 80. This means that

80+ 2MB superpages can potentially be coalesced in our

TLBs. Since CPUs (e.g., see Intel’s Sandybridge, Haswell,

and Skylake TLBs) use 16-set L1 TLBs, this is sufficient

to entirely offset mirrors for L1 MIX TLBs. L2 TLBs usu-

!"

#!"

$!"

%&!"

%'!"

!" (" '")" %&" %*" %$" &%" &#" &+" (!" ((" ('" ()" #&",
-
.
/
0
1
23
4
"5
-
6"
&
7
8
"

9
:
0
;
<"

=;=>-0"?&!@A"

=;=>-0"?'!@A"

=;=>-0"?$!@A"

!"

%!"

&!"

(!"

#!"

!" (" '")" %&" %*" %$" &%" &#" &+" (!" ((" ('" ()" #&"

,
-
.
/
0
1
23
4
"5
-
6"
%
B
8
"

9
:
0
;
<"

C-6DE-:F"

=;=>-0"?&!@A"

=;=>-0"?'!@A"

Figure 11. Average superpage contiguity for native and virtual-

ized CPU, and GPU workloads. We show trends as memory frag-

mentation is increased with memhog, separately for 2MB and 1GB

superpages.

!"

!#$"

!#%"

!#&"

!#'"

("

(" $" %" '" (&")$" &%"

*
+
,
"

*-./01234"

56/78"*9:";96<=8>"?"@A8>B"

C>D";CE"$!FB"

C>D";CE"'!FB"

>6..86G";CE"$!FB"

>6..86G";CE"'!FB"

!"

!#$"

!#%"

!#&"

!#'"

("

(" $" %" '" (&")$" &%"

*
+
,
"

*-./01234"

56/78"*9:";H20IJ8C-<4B"
K636"6.6G4/>=";CE"$!FB"

K636"6.6G4/>=";CE"&!FB"

0<6AEL!!";CE"$!FB"

0<6AEL!!";CE"'!FB"

Figure 12. Superpage contiguity CDF as memhog varies, for

native CPU workloads.

ally have 64-128 sets; while memhog at 20% and 60% see

enough 2MB page contiguity to offset this consistently, con-

tiguity does drop with more fragmentation. Nevertheless,

even in these cases, it is enough (80+) that it can sufficiently

(though not entirely) enable coalescing to counter mirroring.

Figure 11 also shows contiguity for 1GB pages. Since

1GB pages require much larger defragmented physical

memory regions than 2MB pages, they are harder to form.

As a result, the number of contiguous 1GB pages is usu-

ally lower than 2MB pages. Most workloads see 20-30 con-

tiguous 1GB pages, even with relatively high fragmentation

when memhog is 60%. Fortunately, since this covers 20-

30GB of memory in an 80GB memory system, this amount

of contiguity is good enough for effective coalescing.

Figures 12 and 13 focus on superpage contiguity in terms

of the cumulative distribution functions (CDFs) for native

CPU, virtualized CPU, and GPU workloads. Once again,

memory fragmentation is controlled using memhog, and

virtualized results also rely on VM consolidation to generate

load. Applications with higher contiguity see the largest

increases in CDF values further along the x-axis. Figures 12-

13 show that all these workloads see considerable contiguity,

even when system fragmentation is high.

!"

!#$"

!#%"

!#&"

!#'"

("

(" $" %" '" (&")$" &%"

*
+
,
"

*-./01234"

526317829:;"*<="

>?@"A(5BC>D"$!EF"

>?@"A%5BC>D"$!EF"

GH"3:G/.0"A(5BC>D"$!EF"

GH"3:G/.0"A%5BC>D"$!EF"

!"

!#$"

!#%"

!#&"

!#'"

("

(" $" %" '" (&")$" &%"

*
+
,
"

*-./01234"

I<="
>1>>:60J1"A>D"$!EF"

>1>>:60J1"A>D"'!EF"

K@G"A>D"$!EF"

K@G"A>D"'!EF"

Figure 13. Superpage contiguity CDF as memhog varies, for

virtualized CPU and GPU workloads

7.2 Results

We begin by comparing the performance of MIX TLBs
against commercially available Intel Haswell TLB config-

urations. Note that while we refer to this as a split configu-

ration, it uses split L1 TLBs, but partly-split L2 TLBs (i.e.,

4KB and 2MB translations are hashed-rehashed in 1 TLB,

while 1GB translations are cached in a separate TLB). We

then also compare MIX TLBs to simulated multi-indexing

schemes (i.e., hash-rehash and skew TLBs at both the L1 and

L2 levels for all page sizes). Finally, we demonstrate how

MIX TLBs perform in tandem with past work on COLT.

Comparisons to split TLBs: Figure 14 shows performance

improvements using area-equivalent MIX TLBs versus a

Haswell style TLB. To conserve space, we pick represen-

tative benchmarks from Spec + PARSEC, the big-memory
workloads, and the GPU applications. We also show average

results for the remaining workloads in each category.

We separate results for several cases. For native CPU

workloads, we first use libhugetlbfs to try to use 4KB, 2MB,

or 1GB pages exclusively. We then run native CPU work-

loads on a system with transparent hugepage support or
THS enabled, where Linux attempts to allocate as many

2MB pages as possible, backing off to 4KB pages if this

is not feasible. We also show results for virtualized CPU

workloads, with 1 VM, and then a consolidated system with

4 VMs. The VMs are configured to support whatever mix

of 4KB, 2MB, and 1GB pages the guest OS and hypervisor

think are appropriate. Finally, we show GPU workloads on

non-virtualized systems.

Figure 14 shows that MIX TLBs outperform commercial

TLBs comprehensively, frequently in excess of 10%. For

setups where small pages are prevalent (e.g., 4KB bars), we

see more than 8% performance improvements on native and

virtualized CPUs, as well as GPUs. This is because split

TLBs cannot use the 2MB/1GB L1 TLBs, and the 1GB L2

TLBs for 4KB pages, while MIX TLBs do not have this

utilization problem.

Figure 14 also shows that MIX TLBs perform well when

superpages become more prevalent. For example, in the

2MB or THS cases, where 2MB pages become more com-

mon, MIX TLBs achieve better performance than split be-

!"
#!"
$!"
%!"
&!"
'!"

(
)*
"

)+
,
,
-"

+
.
/
-"

/
'
!
!
"

(
0
(
)-
"

12
"3
0
13
-"

4
")
+
)5
0
-"

+
.
/
-"

6
*1
"

7
(
-"

+
.
/
-"

890)":";+<10)" =>/?(0(@<A" B;C"

;
0
<)
0
,
3"
;
0
<*
@
<(

+
,
)0
"

D(
9
<@
.
0
(
0
,
3" &E="

$F="

#B="

GH8"

#IF"

&IF"

Figure 14. Percent performance improvement from MIX TLBs

compared to area-equivalent split TLBs.

!"
#!"
$!"
%!"
&!"
'!"
(!"

!" %!" (!")!" #$!"

*
+
,-
+
.
/"
*
+
,0
1
,2

3
.
-+
"

42
5
,1
6
+
2
+
.
/"

71,8913:"

;*<"=2>"$!?@" ;*<"=2>"A!?@"

B*<"=2>"$!?@" B*<"=2>"(!?@"

!"

#!"

$!"

%!"

&!"

'!"

(!"

!" $'" '!" C'" #!!"
71,8913:"

D59E/"FGHI" J4;D"J4K"

Figure 15. (Left) percentage performance improvement of MIX

TLBs versus split TLBs, with memhog varying; (Right) Perfor-

mance overheads of split TLBs and MIX TLBs compared to ideal

hypothetical TLBs which never miss.

cause they can utilize all hardware for 2MB pages, not just

2MB page TLBs. And these gains are even higher, in excess

of 12%, for 1GB pages, which can only use small 1GB page

TLBs in the split.
Unsurprisingly, MIX TLBs are particularly useful when

TLB misses become more expensive. Therefore, for virtu-

alized workloads, where TLB misses necessitate expensive

two-dimensional page table walks [4, 20, 50], 40%+ perfor-

mance improvements are seen. Similarly, GPUs, which ex-

perience heavy TLB miss traffic [21, 22, 23], enjoy signifi-

cant performance benefits for any distribution of page sizes.

Figure 15 sheds further light on performance benefits, in

the presence of memory fragmentation. The graph on the

left shows MIX TLB performance improvements over split

TLBs, as memhog fragments 20% and 80% of CPU mem-

ory, and 20% and 60% GPU memory. We arrange the work-

loads (numbered on the x-axis) in ascending order of perfor-

mance benefits. As expected, increasing memory fragmen-

tation does reduce performance as it reduces the incidence

of superpages; nevertheless, MIX TLBs consistently outper-

form split TLBs by 20%+.

The graph on the right of Figure 15 compares how well

MIX TLBs do versus a hypothetical ideal TLB which never

misses and cannot hence be realized. We plot curves for the

performance overheads experienced by split TLBs and MIX
TLBs versus this ideal TLB. The lower the y-axis values,

the better. While almost a third of the split Haswell TLBs

!"#$
#$

"#$
%#$
&#$
'#$

!()$!)$)$ ()$ ")$ *)$ %)$))$+
,
-.
,
/
0$
1
/
,
-2
3
$

45
6
-7
8
,
5
,
/
0$

+,-.,/0$+,-9:$456-78,5,/0$

;<=>6=,!?/@,A?/2$B.C,5,B$

!"#$
#$

"#$
%#$
&#$
'#$

!)$ ()$ *)$))$+
,
-.
,
/
0$
1
/
,
-2
3
$

45
6
-7
8
,
5
,
/
0$

+,-.,/0$+,-9:$456-78,5,/0$

;4DE$FGHB$;4I$

Figure 16. (Left) performance-energy tradeoffs for skew-

associative TLBs with prediction (blue) and hash-rehash with pre-

diction (green); and (Right) MIX TLB performance-energy trade-

offs.

experience a 10%+ performance deviation from the ideal

scenario, MIX TLBs always achieve under 10%.

Comparisons to multi-indexing methods: We now com-

pare performance and energy benefits of MIX TLBs versus

area-equivalent skew-associative and hash-rehash (enhanced

with the best prediction strategies [10]) approaches. Figure

16 shows these approaches for native and virtualized CPUs,

as well as GPUs. We plot each workload along two dimen-

sions. On the x-axis, we plot percent performance improve-

ment versus the split TLB design. On the y-axis, we plot the

percent address translation energy saved, also versus split

TLBs. Therefore, we desire points at the top right quadrant

of this space. The graph on the left shows skew-associative

TLBs (blue) and hash-rehash TLBs (green), while the graph

on the right shows MIX TLBs.
Figure 16 shows that MIX TLBs have better performance

and energy than state-of-art multi-indexing schemes. Even

the presence of operations like mirroring, which do increase

energy by filling into multiple TLBs sets, are dwarfed by the

big energy savings from decreasing TLB misses and hence

cache/memory references. Another big source of energy sav-

ings comes from the relative simplicity of MIX TLB imple-

mentations; for example, we find that skew-associative TLBs

suffer area overheads from requiring time-stamp counters for

good replacement policies [37]. Therefore, area-equivalent

skew-associative TLBs have fewer entries than MIX TLBs.
Hash-rehashing is indeed more energy efficient than skew-

associativity but still needs to access a predictor structure,

hurting its energy compared to MIX TLBs.
Note also that multi-indexing schemes can degrade per-

formance and energy. This occurs when TLB hits are fre-

quent but have to go through more complex multi-step

lookups when the page size predictor makes mistakes. MIX
TLBs do not suffer from these problems.

Dynamic energy breakdown: MIX TLBs achieve energy

efficiency from their shorter runtime, which reduces leak-

age energy. It is more challenging, however, to identify the

sources of savings in dynamic energy because MIX TLBs
do have some more sophisticated operations (e.g., mirror-

ing). Figure 17 therefore quantifies the contribution of TLB

!"

#$"

$!"

%$"

&!!"

'(
)*
+"

',
-
.
"

/
01
"

2
*3
'"

'(
)*
+"

',
-
.
"

/
01
"

2
*3
'"

'(
)*
+"

',
-
.
"

/
01
"

2
*3
'"

45'" ,2-67'" 28229"

:
-
13
-
7
+6
;
-
"<
5"

=
>
>
1-
''
"?
16
7
')
6
@
<
7
"

A
7
-
1;
B
" <+/-1"

2*''"

C))"

)<<,8("

Figure 17. Percentage of address translation dynamic energy de-

voted to various TLB maintenance operations.

energy devoted to lookups, page table walks, TLB fills after

the miss, and other operations like TLB invalidations. We

focus on GPU TLB results but the trends remain the same in

other applications too. The y-axis is normalized to the total

energy expended on Haswell split TLBs.

Figure 17 shows that most energy is used for lookups and

misses. This is because all loads and stores result in lookups,

while misses are expensive, invoking multiple memory refer-

ences through the memory hierarchy. In contrast, the energy

on TLB fill is much lower. Therefore, mirroring, which oc-

curs only on fills, does not affect overall energy substantially.

Note also that unlike multi-indexing approaches, which in-

crease lookup energy due to complex accesses with predic-

tors, MIX TLBs leave lookup energy largely unchanged.

Scaling TLBs: We now focus on studying how TLB scaling,

specifically with the number of sets, impacts MIX TLBs.
Naturally, with more sets, we need more superpage conti-

guity to coalesce sufficiently to offset mirroring. Therefore,

beyond the 64-128 set count maintained by Sandybridge and

Haswell systems, we have also studied hypothetical TLBs

with 512 sets. In general, we find that even though many

workloads do not exhibit sufficient superpage contiguity to

completely offset 512 mirrors, they still achieve 80+ pages

of contiguity. This is usually enough for good performance.

We have found that 512-set TLBs achieve within 13% of the

performance of ideal TLBs which never miss.

Complementing COLT: Finally, MIX TLBs are orthogonal

to past work on coalesced TLBs or COLT [16]. The origi-

nal COLT work proposed coalescing contiguous small page

translations into single TLB entries. However, an exten-

sion, which we call COLT++, may also coalesce contigu-

ous superpages in split TLBs. Each of the split TLBs inde-

pendently performs coalescing on their respective page size

translations. We quantify the benefits of these approaches

in Figure 18, comparing them to two other data points. The

first is an area-equivalent MIX TLB. The second combines

COLT with MIX TLBs. In this approach, we design a sin-

gle set-associative TLB that can support multiple concurrent

page sizes; however, there we can also coalesce contiguous

small pages. To compare fairly against past work [16], we

assume that we can coalesce up to 4 contiguous small pages.

!"

#$"

$!"

%
&
'
"(
)
*
"#
!
+
,"

%
&
'
"(
)
*
"-
!
+
,"

%
&
'
"(
)
*
"#
!
+
,"

%
&
'
"(
)
*
"-
!
+
,"

%
&
'
"(
)
*
"#
!
+
,"

%
&
'
"(
)
*
"-
!
+
,"

./012" 345" 645"

&
2
78
2
9
:/
;
2
"&
2
7<
=
7)

/
9
82
"

>)
?
7=
1
2
)
2
9
:"

%@AB"

%@ABCC"

5>%D"

%@AB"C"5>%D"

5>E"

5>E"

Figure 18. Compared to split TLBs, performance improvements

from MIX TLBs and their combination with COLT.

Figure 18 shows the average performance improvements

of these various approaches versus Haswell-style split TLBs.

We compare native and virtualized workloads, varying frag-

mentation with memhog. COLT can be helpful, but mostly

when small pages dominate. In the presence of superpages,

they cannot provide benefits. This explains the relatively low

performance benefits when fragmentation is low (memhog
20%). COLT++ helps when superpages are frequent. On

average, there are 8-10% performance differences versus

COLT. However, MIX TLBs outperform even these cases

because they can utilize all the TLB hardware for any dis-

tribution of page sizes. Further, combining MIX TLBs with

COLT provide the highest performance, exceeding 20% ben-

efits in all cases.

8. Conclusion

This work was motivated by the fact that modern TLB hard-

ware is rigid in capacity allocation, despite the elasticity

of the OS which can allocate many page size distributions.

Many system factors affect these distributions, such as work-

load characteristics, system fragmentation and uptime, etc.

There is a glaring gap between the richness of memory allo-

cation at the software level, and modern TLB hardware.

We show one way of correcting this problem, with MIX
TLBs, an energy-efficient TLB that uses all its resources to

seamlessly adapt to any distribution of page sizes. We show

its benefits for native CPUs, virtualized CPUs, and CPU-

GPU systems. Further, we believe that its simple implemen-

tation makes MIX TLBs ready for quick adoption.

9. Acknowledgments

We thank Martha Kim, Ján Veselý, and Zi Yan for their in-

sights and feedback during the preparation of initial drafts of

this manuscript. We thank the National Science Foundation,

which partially supported this work through grants 1253700

and 1337147, Google and VMware for its support.

References

[1] J. Navarro, S. Iyer, P. Druschel, and A. Cox, “Practical,

Transparent Operating System Support for Superpages,” OSDI,

2002.

[2] M. Talluri and M. Hill, “Surpassing the TLB Performance of

Superpages with Less Operating System Support,” ASPLOS,

1994.

[3] M. Talluri, S. Kong, M. Hill, and D. Patterson, “Tradeoffs in

Supporting Two Page Sizes,” ISCA, 1992.

[4] B. Pham, J. Vesely, G. Loh, and A. Bhattacharjee, “Large Pages

and Lightweight Memory Management in Virtualized Systems:

Can You Have it Both Ways?,” MICRO, 2015.

[5] D. Fan, Z. Tang, H. Huang, and G. Gao, “An Energy Efficient

TLB Design Methodology,” ISLPED, 2005.

[6] V. Karakostas, J. Gandhi, A. Cristal, M. Hill, K. McKinley,

M. Nemirovsky, M. Swift, and O. Unsal, “Energy-Efficient

Address Translation,” HPCA, 2016.

[7] T. Juan, T. Lang, and J. Navarro, “Reducing TLB Power

Requirements,” ISLPED, 1997.

[8] I. Kadayif, A. Sivasubramaniam, M. Kandemir, G. Kandiraju,

and G. Chen, “Generating Physical Addresses Directly for

Saving Instruction TLB Energy,” MICRO, 2002.

[9] A. Sodani, “Race to Exascale: Opportunities and Challenges,”

MICRO Keynote, 2011.

[10] M. Papadopoulou, X. Tong, A. Seznec, and A. Moshovos,

“Prediction-Based Superpage-Friendly TLB Designs,” HPCA,

2014.

[11] Intel, “Haswell,” www.7-cpu.com/cpu/Haswell.html, 2016.

[12] Intel, “Skylake,” www.7-cpu.com/cpu/Skylake.html, 2016.

[13] J. Gandhi, A. Basu, M. Hill, and M. Swift, “Efficient Memory

Virtualization,” MICRO, 2014.

[14] J. Buell, D. Hecht, J. Heo, K. Saladi, and R. Taheri,

“Methodology for Performance Analysis of VMware vSphere

under Tier-1 Applications,” VMWare Technical Journal, 2013.

[15] A. Seznec, “Concurrent Support of Multiple Page Sizes on a

Skewed Associative TLB,” IEEE Transactions on Computers,

2004.

[16] B. Pham, V. Vaidyanathan, A. Jaleel, and A. Bhattacharjee,

“CoLT: Coalesced Large-Reach TLBs,” MICRO, 2012.

[17] B. Pham, A. Bhattacharjee, Y. Eckert, and G. Loh, “Increasing

TLB Reach by Exploiting Clustering in Page Translations,”

HPCA, 2014.

[18] A. Basu, J. Gandhi, J. Chang, M. Hill, and M. Swift, “Efficient

Virtual Memory for Big Memory Servers,” ISCA, 2013.

[19] A. Bhattacharjee, “Large-Reach Memory Management Unit

Caches,” MICRO, 2013.

[20] R. Bhargava, B. Serebrin, F. Spadini, and S. Manne, “Accel-

erating Two-Dimensional Page Walks for Virtualized Systems,”

ASPLOS, 2008.

[21] B. Pichai, L. Hsu, and A. Bhattacharjee, “Architectural

Support for Address Translation on GPUs,” ASPLOS, 2014.

[22] B. Pichai, L. Hsu, and A. Bhattacharjee, “Address Translation

for Throughput Oriented Accelerators,” IEEE Micro Top Picks,

2015.

[23] J. Power, M. Hill, and D. Wood, “Supporting x86-64 Address

Translation for 100s of GPU Lanes,” HPCA, 2014.

[24] N. Agarwal, D. Nellans, M. O’Connor, S. Keckler, and

T. Wenisch, “Unlocking Bandwidth for GPUs in CC-NUMA

Systems,” HPCA, 2015.

[25] N. Agarwal, D. Nellans, M. Stephenson, M. O’Connor,

and S. Keckler, “Page Placement Strategies for GPUs within

Heterogeneous Memory Systems,” ASPLOS, 2015.

[26] G. Kyriazis, “Heterogeneous System Architecture: A Techni-

cal Review,” Whitepaper, 2012.

[27] J. Vesely, A. Basu, M. Oskin, G. Loh, and A. Bhattacharjee,

“Observations and Opportunities in Architecting Shared Virtual

Memory for Heterogeneous Systems,” ISPASS, 2016.

[28] T. Zheng, D. Nellans, A. Zulfiqar, M. Stephenson, and

S. Keckler, “Towards a High Performance Paged Memory for

GPUs,” HPCA, 2016.

[29] V. Karakostas, J. Gandhi, F. Ayar, A. Cristal, M. Hill,

K. McKinley, M. Nemirovsky, M. Swift, and O. Unsal,

“Redundant Memory Mappings for Fast Access to Large

Memories,” ISCA, 2015.

[30] Intel, “Intel 64 and IA-32 Architectures Software Developer’s

Manual,” 2016.

[31] D. Lustig, G. Sethi, M. Martonosi, and A. Bhattacharjee,

“COATCheck: Verifying Memory Ordering at the Hardware-OS

Interface,” ASPLOS, 2016.

[32] B. Romanescu, A. Lebeck, and D. Sorin, “Specifying and

Dynamically Verifying Address Translation-Aware Memory

Consistency,” ASPLOS, 2010.

[33] N. Muralimanohar, R. Balasubramonian, and N. Jouppi,

“CACTI 6.0: A Tool to Model Large Caches,” MICRO, 2007.

[34] A. Basu, M. Hill, and M. Swift, “Reducing Memory Refer-

ence Energy with Opportunistic Virtual Caching,” ISCA, 2012.

[35] A. Seznec, “A Case for Two-Way Skewed Associative

Cache,” ISCA, 1993.

[36] F. Bodin and A. Seznec, “Skewed Associativity Enhances

Performance Predictability,” ISCA, 1995.

[37] D. Sanchez and C. Kozyrakis, “The ZCache: Decoupling

Ways and Associativity,” MICRO, 2010.

[38] R. Sampson and T. Wenisch, “Z-Cache Skewered,” WDDD,

2011.

[39] A. Bhattacharjee, D. Lustig, and M. Martonosi, “Shared Last-

Level TLBs for Chip Multiprocessors,” HPCA, 2011.

[40] C.-K. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser, G. Lowney,

S. Wallace, V. J. Reddi, and K. Hazelwood, “Pin: Building Cus-

tomized Program Analysis Tools with Dynamic Instrumenta-

tion,” PLDI, 2005.

[41] C. Bienia, S. Kumar, J. P. Singh, and K. Li, “The PARSEC

Benchmark Suite: Characterization and Architectural Simplica-

tions,” IISWC, 2008.

[42] M. Ferdman, A. Adileh, O. Kocberber, S. Volos, M. Alisafaee,

D. Jevdjic, C. Kaynak, A. D. Popescu, A. Ailamaki, , and

B. Falsafi, “Clearing the Clouds: A Study of Emerging Scale-

out Workloads on Modern Hardware,” ASPLOS, 2012.

[43] S. Che, J. Sheaffer, M. Boyer, L. Szafaryn, L. Wang, and

K. Skadron, “A Characterization of the Rodinia Benchmark

Suite with Comparison to Contemporary CMP Workloads,”

IISWC, 2010.

[44] A. Arcangeli, “Transparent Hugepage Support,” KVM Forum,

2010.

[45] A. Clements, F. Kaashoek, and N. Zeldovich, “Scalable

Address Spaces Using RCU Balanced Trees,” ASPLOS, 2012.

[46] A. Bhattacharjee, “Translation-Triggered Prefetching,” ASP-

LOS, 2017.

[47] B. Pham, J. Vesely, G. Loh, and A. Bhattacharjee, “Using TLB

Speculation to Overcome Page Splintering in Virtual Machines,”

Rutgers Technical Report DCS-TR-713, 2015.

[48] F. Guo, S. Kim, Y. Baskakov, and I. Banerjee, “Proactively

Breaking Large Pages to Improve Memory Overcommitment

Performance in VMware ESXi,” VEE, 2015.

[49] F. Gaud, B. Lepers, J. Decouchant, J. Funston, and A. Fe-

dorova, “Large Pages May be Harmful on NUMA Systems,”

USENIX ATC, 2014.

[50] J. Gandhi, M. Hill, and M. Swift, “Agile Paging: Exceeding

the Best of Nested and Shadow Paging,” ISCA, 2016.

