
Secure, Consistent, and High-Performance Memory Snapshotting
Guilherme Cox

Rutgers University

Zi Yan

Rutgers University

Abhishek Bhattacharjee

Rutgers University

Vinod Ganapathy

Indian Institute of Science

ABSTRACT
Many security and forensic analyses rely on the ability to fetch mem-

ory snapshots from a target machine. To date, the security community

has relied on virtualization, external hardware or trusted hardware

to obtain such snapshots. These techniques either sacrifice snapshot

consistency or degrade the performance of applications executing

atop the target. We present SnipSnap, a new snapshot acquisition

system based on on-package DRAM technologies that offers snapshot

consistency without excessively hurting the performance of the tar-

get’s applications. We realize SnipSnap and evaluate its benefits using

careful hardware emulation and software simulation, and report our

results.

CCS CONCEPTS
• Security and privacy→ Tamper-proof and tamper-resistant
designs; Trusted computing; Virtualization and security;

KEYWORDS
Cloud security; forensics; hardware security; malware and unwanted

software

ACM Reference Format:
Guilherme Cox, Zi Yan, Abhishek Bhattacharjee, and Vinod Ganapathy. 2018.

Secure, Consistent, and High-Performance Memory Snapshotting. In CO-

DASPY ’18: Eighth ACM Conference on Data and Application Security and Pri-

vacy, March 19–21, 2018, Tempe, AZ, USA. ACM, New York, NY, USA, 12 pages.

https://doi.org/10.1145/3176258.3176325

1 INTRODUCTION
The notion of acquiring memory snapshots is one of ubiquitous im-

portance to computer systems. Memory snapshots have been used

for tasks such as virtual machine migration and backups [4, 19, 21,

23, 31, 34, 39, 45, 63, 71, 94] as well as forensics [18, 81], which is the

subject of this paper. In particular, memory snapshot analysis is the

method of choice used by forensic analyses that determine whether

a target machine’s operating system (OS) code and data are infected

by malicious rootkits [10, 17, 24, 25, 43, 72–74, 80]. Such forensic

methods have seen wide deployment. For example, Komoku [72, 74]

(now owned by Microsoft) uses analysis of memory snapshots in its

forensic analysis, and runs on over 500 million hosts [8]. Similarly,

Google’s open source framework, Rekall Forensics [2], is used to mon-

itor its datacenters [68]. Fundamentally, all these techniques depend

on secure and fast memory snapshot acquisition. Ideally, a memory

snapshot acquisition mechanism should satisfy three properties:

1 Tamper resistance. The target’s OS may be compromised with

malware that actively evades detection. The snapshot acquisition

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

CODASPY ’18, March 19–21, 2018, Tempe, AZ, USA

© 2018 Association for Computing Machinery.

ACM ISBN 978-1-4503-5632-9/18/03. . . $15.00

https://doi.org/10.1145/3176258.3176325

mechanism must resist malicious attempts by an infected target OS

to tamper with its operation.

2 Snapshot consistency. A consistent snapshot is one that faith-

fullymirrors thememory state of the target machine at a given instant

in time. Consistency is important for forensic tools that analyze the

snapshot. Without consistency, different portions of the snapshot

may represent different points in time during the execution of the

target, making it difficult to assign semantics to the snapshot.

3 Performance isolation. Snapshot acquisition must only min-

imally impact the performance of other applications that may be

executing on the target machine.

The security community has converged on three broad classes of

techniques for memory snapshot acquisition, namely virtualization-

based, trusted hardware-based and external hardware-based techniques.

Unfortunately, none of these solutions achieve all three properties

(see Figure 1).

With virtualization-based techniques (pioneered by Garfinkel and

Rosenblum [35]), the target is a virtual machine (VM) running atop a

trusted hypervisor. The hypervisor has the privileges to inspect the

memory and CPU state of VMs, and can therefore obtain a snapshot

of the target. This approach has the benefit of isolating the target

VM from the snapshot acquisition mechanism, which is implemented

within the hypervisor. However, virtualization-based techniques:

• impose a tradeoff between consistency and performance-isolation.

To obtain a consistent snapshot, the hypervisor can pause the target

VM, thereby preventing the target from modifying the VM’s CPU

and memory state during snapshot acquisition. But this consistency

comes at the cost of preventing applications within the target from

executing during snapshot acquisition, which is disruptive if snap-

shots are frequently required, e.g., when a cloud provider wants to

monitor the health of the cloud platform in a continuous manner.

The hypervisor could instead allow the target VM to execute con-

currently with memory acquisition, but this compromises snapshot

consistency.

• require a substantial software trusted computing base (TCB). The

entire hypervisor is part of the TCB. Production-quality hypervisors

havemore than 100K lines of code and a history of bugs [26–30, 55, 79]

that can jeopardize isolation.

• are not applicable to container-based cloud platforms. Virtualization-

based techniques are applicable only in settings where the target is

a VM. This restricts the scope of memory acquisition only to en-

vironments where the target satisfies this assumption, i.e., server-

class systems and cloud platforms that use virtualization. An in-

creasing number of cloud providers are beginning to deploy light-

weight client isolationmechanisms, such as those based on containers

(e.g., Docker [1]). Containers provide isolation by enhancing the OS.

On container-based systems, obtaining a full-system snapshot would

require trusting the OS, and therefore placing it in the TCB. However,

doing so defeats the purpose of snapshot acquisition if the goal is to

monitor the OS itself for rootkit infection.

Hardware-based techniques reduce the software TCB and are ap-

plicable to any target system that has the necessary hardware support.

https://doi.org/10.1145/3176258.3176325
https://doi.org/10.1145/3176258.3176325

CODASPY ’18, March 19–21, 2018, Tempe, AZ, USA G. Cox et al.

Property→ 1 Tamper 2 Snapshot 3 Performance

Method↓ resistance consistency isolation

Virtualization ✓ Tradeoff: 2 ✓ ⇔ 3 ✗

Trusted hardware ✓ Tradeoff: 2 ✓ ⇔ 3 ✗
External hardware ✗ ✗ ✓

SnipSnap ✓ ✓ ✓

Figure 1: Design tradeoffs in snapshot acquisition.

Methods that use trusted hardware rely on the hardware architec-

ture’s ability to isolate the snapshot acquisition system from the rest

of the target. For example, ARM TrustZone [5, 9, 36, 85] partitions the

processor’s execution mode so that the target runs in a deprivileged

world (“Normal world”), without access to the snapshot acquisition

system, which runs in a privileged world (“Secure world”) with full

access to the target. However, because the processor can only be

in one world at any given time, this system offers the same snap-

shot consistency versus performance isolation tradeoff as virtualized

solutions. The situation is more complicated on a multi-processor

TrustZone-based system, because the ARM specification allows in-

dividual processor cores to independently transition between the

privileged and deprivileged worlds [5, §3.3.5]. Thus, from the per-

spective of snapshot consistency, care has to be taken to ensure that

when snapshot acquisition is in progress on one processor core, all

the other cores are paused and do not make concurrent updates to

memory. This task is impossible to accomplish without some support

from the OS to pause other cores. Trusting the OS to accomplish

this task defeats the purpose of snapshot acquisition if the goal is to

monitor the OS itself.

External hardware-based techniques use a physically isolated hard-

ware module, such as a PCI-based co-processor (e.g., as used by

Komoku [8]), on the target system and perform snapshot acquisition

using remote DMA (e.g., [10, 16, 50, 58, 59, 65, 67, 72, 74]). These

techniques offer performance-isolation by design—the co-processor

executes in parallel with the CPU of the target system and therefore

fetches snapshots without pausing the target. However, this very fea-

ture also compromises consistency because memory pages in a single

snapshot may represent the state of the system at different points

in time. Further, a malicious target OS can easily subvert snapshot

acquisition despite physical isolation of the co-processor [78]. Co-

processors rely on the target OS to set up DMA. On modern chipsets

with IOMMUs, a malicious target OS can simply program the IOMMU

to reroute DMA requests away from physical memory regions that it

wants to hide from the co-processor (e.g., pages that store malicious

code and data). Researchers have also discussed address-translation

attacks that leverage the inability of co-processors to view the CPU’s

page-table base register (PTBR) [51, 56]. These attacks enable mali-

cious virtual-to-physical address translations, which effectively hide

memory contents in the snapshot from forensic analysis tools.

Contributions. We propose and realize Secure and Nimble In-
Package Snapshotting or SnipSnap, a hardware-based memory

snapshot acquisition mechanism that achieves all three properties.

SnipSnap frees snapshotting from the shackles of the consistency-

performance tradeoff by leveraging two related hardware trends—the

emergence of high-bandwidth DRAM placed on the same package

as the CPU [15, 41, 60, 61], and the resurgence of near-memory

processing [6, 7, 44]. Specifically, processor vendors have embraced

technologies like embedded on-package DRAM in products including

IBM’s Power 7 processor, Intel’s Haswell, Broadwell, and Skylake pro-

cessors, and even in mobile platforms like Apple’s iPhone [32]. More

recently, higher bandwidth on-package DRAMhas been implemented

on Intel’s Knight’s Landing chip, while emerging 3D and 2.5D die-

stacked DRAM is expected to be widely adopted [60]. On-package

DRAM has in turn prompted flurry of research on near-memory

Figure 2: Architecture of SnipSnap. Only the on-chip hard-
ware components are in the TCB.

processing techniques that place logic close to these DRAM tech-

nologies. Consequently, near-memory processing logic for machine

learning, graph processing, and general-purpose processing has been

proposed [6, 7, 44] for better system performance and energy.

SnipSnap leverages these hardware trends to realize fast and effec-

tive memory snapshotting. SnipSnap leverages on-package DRAM

by realizing a fully hardware-based TCB. With modest hardware

modifications that increase chip area by under 1%, SnipSnap captures

and digitally signs pages in the on-package DRAM. The resulting

snapshot captures the memory and CPU state of the machine faith-

fully, and any attempts by a malicious target OS to corrupt the state

of the snapshot can be detected during snapshot analysis. Because

SnipSnap’s TCB consists only of the hardware, it can be used on

target machines running a variety of software stacks, e.g., traditional

systems (OS atop bare-metal), virtualized systems, and container-

based systems. We identify consistency as an important property of

memory snapshots and present SnipSnap’s memory controller that

offers both consistency and performance isolation. We implement

SnipSnap using real-system hardware emulation and detailed soft-

ware simulation atop state-of-the-art implementations of on-package

die-stacked DRAM (e.g., UNISON cache [52]). We vary on-package

die-stacked DRAM from 512MB to 8GB capacities. We find that Snip-

Snap offers 4-25× performance improvements while also ensuring

consistency. Finally, we verify SnipSnap’s consistency guarantees

using TLA+ [57].

In summary, SnipSnap securely obtains consistent snapshots while

offering performance-isolation using non-exotic hardware that is al-

ready being implemented by chip vendors. This makes SnipSnap a

powerful and general approach for snapshot acquisition, with appli-

cations to memory forensics and beyond.

2 OVERVIEW AND THREAT MODEL
SnipSnap allows a forensic analyst to acquire a complete snapshot of

a target machine’s off-chip DRAM memory. SnipSnap’s mechanisms

are implemented in a hardware TCB and an untrusted snapshot

driver in the target’s OS. The hardware TCB consists of on-package

DRAM, simple near-memory processing logic, and requires modest

modification of the on-chip memory controller and CPU register file.

In concert, these components operate as described below.

A forensic analyst initiates snapshot acquisition by triggering

the hardware to enter snapshot mode. Subsequently, the memory

controller iteratively brings each physical page frame from off-chip

DRAM to the on-package DRAM. SnipSnap’s on-chip near-memory

processing logic creates a copy of the page and computes a cryp-

tographic digest of the page. The untrusted snapshot driver in the

target OS then commits the snapshot entry to an external medium,

such as persistent storage, the network, or a diagnostic serial port.

Secure, Consistent, and High-Performance Memory Snapshotting CODASPY ’18, March 19–21, 2018, Tempe, AZ, USA

The hardware exits snapshot mode after the near-memory process-

ing logic has iterated over all page frames of the target’s off-chip

DRAM. A well-formed memory snapshot from SnipSnap contains

one snapshot entry per page frame and one entry with CPU register

state and a cryptographic digest. Figure 2 shows the components of

SnipSnap:

1 The trigger device is an external mechanism that initiates snap-

shot acquisition. When activated, the trigger device toggles the hard-

ware into snapshot mode. It also informs the target’s OS that the

hardware has entered snapshot mode.

2 The memory controller brings pages from off-chip DRAM into

on-package DRAM to be copied into the snapshot when the hardware

is in snapshot mode (as discussed above). The memory controller

maintains internal hardware state to sequentially iterate over all off-

chip DRAM page frames. The main novelty in SnipSnap’s memory

controller is a copy-on-write feature that allows snapshot acquisition

to proceed without pausing the target.

3 The near-memory processing logic implements cryptographic

functionality for hash and digital-signature computation in on-package

DRAM [20]. As we show, such near-memory processing is readily im-

plemented atop, for example, die-stacked memory [60]. As such, we

assume that the hardware is endowed with a public/private key pair

(as are TPMs—trusted platform modules). Digital signatures protect

the integrity of the snapshot even from an adversary with complete

control of the target’s software stack.

4 The snapshot driver, SnipSnap’s only software component, is

implemented within the target’s OS. Its sole responsibility is to

copy snapshot entries created by the hardware to a suitable external

medium.

5 The hardware/software interface facilitates communication be-

tween the snapshot driver and the hardware components. This in-

terface consists of three special-purpose registers and adds minimal

overhead to the existing register file of modern processors, which typ-

ically consists of several tens of architecturally-visible and hundreds

of physical registers.

Threat Model. Our threat model is that of an attacker who controls

the target’s software stack and tries to subvert snapshot acquisition.

The attacker may try to corrupt the snapshot, return stale snapshot

entries, or suppress parts of the snapshot. A snapshot produced by

SnipSnap must therefore contain sufficient information to allow a

forensic analyst to verify integrity, freshness, and completeness of

the snapshot. We assume that the on-chip hardware components

described above are trusted and are part of the TCB. We exclude

physical attacks on off-chip hardware components, e.g., those that

modify contents of pages either in off-chip DRAMvia electromagnetic

methods, or as they transit the memory bus.

SnipSnap’s snapshot driver executes within the target OS, which

may be controlled by the attacker. We will show that despite this,

a corrupt snapshot driver cannot compromise snapshot integrity,

freshness, or completeness. At worst, the attacker can misuse his con-

trol of the snapshot driver to prevent snapshot entries (or the entire

snapshot) from being written out to the external medium. However,

the forensic analyst can readily detect such denial of service attacks

because the resulting snapshot will be incomplete. Once the forensic

analyst obtains a snapshot, he can analyze it using methods described

in prior work (e.g., [10, 17, 24, 25, 33, 43, 72, 73]) to determine if the

target is infected with malware.

SnipSnap’s main goal is secure, consistent, and fast memory snap-

shot acquisition. Forensic analysts can perform offline analyses on

these snapshots, e.g., to check the integrity of the OS kernel or to

detect traces of malware activity. While analysts can use SnipSnap to

Figure 3: Example showing need for snapshot consistency. De-
picted above is the memory state of a target machine at two points

in time, T and T+δ . At T, a pointer in F1 points to an object in F2. At
T+δ , the object has been freed and the pointer set to null. Without

consistency, the snapshot could contain a copy of F1 at time T and F2 at
time T+δ (or vice-versa), causing problems for forensic analysis.

request snapshots for offline analysis as often as they desire, it is not

a tool to perform continuous, event-based monitoring of the target

machine. To our knowledge, state of the art forensic tools to detect

advanced persistent threats (e.g., [8, 10, 17, 24, 25, 43, 72–74, 80]) rely

on offline analysis of memory snapshots.

3 DESIGN OF SNIPSNAP
We now present SnipSnap’s design, beginning with a discussion of

snapshot consistency.

3.1 Snapshot Consistency
A snapshot of a target machine is consistent if it reflects the state

of the target machine’s off-chip DRAM memory pages and CPU

registers at a given instant in time. Consistency is an important

property for forensic applications that analyze snapshots. Without

consistency, different memory pages in the snapshot represent the

state of the target at different points in time, causing the forensic

analysis to be imprecise. For example, consider a forensic analysis

that detects rootkits by checking whether kernel data structures

satisfy certain invariants, e.g., that function pointers only point to

valid function targets [73]. Such forensic analysis operates on the

snapshot by identifying pointers in kernel data structures, recursively

traversing these pointers to identify more data structures in the

snapshot, and checking invariants when it finds function pointers in

the data structures. If a page F1 of memory contains a pointer to an

object allocated on a page F2, and the snapshot acquisition system

captures F1 and F2 in different states of the target, then the forensic

analysis can encounter a number of illogical situations (Figure 3).

Such inconsistencies can also be used to hide malicious code and

data modifications in memory [51]. Prior work [10, 73] encountered

such situations in the analysis of inconsistent snapshots, and had to

resort to unsound heuristics to remedy the problem. A consistent

snapshot will capture the state of the target’s memory pages at either

T or at T+δ , thereby allowing the forensic analysis to traverse data

structures in memory without the above problems.

As discussed in Section 1, prior systems have achieved snapshot

consistency at the cost of performance isolation, or vice versa. Snip-

Snap acquires consistent memory snapshots without pausing the

target machine in the common case. Snapshot acquisition proceeds

in parallel with user applications and kernel execution that can ac-

tively modify memory. SnipSnap’s hardware design ensures that the

acquired memory snapshot reflects the state of the target machine at

the instant when the hardware entered snapshot mode.

Consistency versus Quiescence. While SnipSnap ensures that an

acquired snapshot faithfully mirrors the state of the machine at a

given time instant, we do not specify what that time instant should

be. Specifically, while snapshot consistency is a necessary property

for client forensic analysis tools, it is not sufficient, i.e., not every

consistent snapshot is ideal from the perspective of client forensic

analyses. For example, consider a consistent snapshot acquired when

the kernel is in the midst of creating a new process. The kernel may

CODASPY ’18, March 19–21, 2018, Tempe, AZ, USA G. Cox et al.

have created a structure to represent the new process but may not

have finished adding it to the process list, resulting in a snapshot

where the process list is not well-formed.

In response, prior work suggests collecting snapshots when the

target machine is in quiescence [43], i.e., a state of the machine when

kernel data structures are likely to be well-formed. Quiescence is a

domain-specific property that depends on which data structures are

relevant for the forensic analysis and what it means for them to be

well-formed. SnipSnap only guarantees consistency, and relies on the

forensic analyst to trigger snapshot acquisition at an instant when the

system is quiescent. Because SnipSnap guarantees consistency, even

if the target enters a non-quiescent state after snapshot acquisition

has been triggered, e.g., due to concurrent kernel activity initiated

by user applications, the snapshot will reflect state of the target

at the beginning of the snapshot acquisition. Triggering snapshot

acquisition when the system is in non-quiescent state may require a

forensic analyst to retake the snapshot.

3.2 Triggering Snapshot Acquisition
An analyst requests a snapshot using SnipSnap’s trigger device. This

device accomplishes three tasks: 1 it toggles the hardware TCB into

snapshot mode; 2 it informs the target’s OS that the hardware is in

snapshot mode; and 3 it allows the analyst to pass a random nonce

that is incorporated into the cryptographic digest of the snapshot.

Task 1 requires direct hardware-to-hardware communication be-

tween the trigger device and the hardware TCB that is transparent to,

and therefore cannot be compromised by, the target OS. Commodity

systems offer many options to implement such communication, and

SnipSnap can adapt any of them. For example, we could connect a

physical device to the programmable interrupt controller, and have it

deliver a non-maskable interrupt to the processor when it is activated.

Upon receipt of this interrupt, the hardware TCB examines the IRQ

to determine its origin, and switches to snapshot mode. Since this

triggering mechanism piggybacks on the standard pin-to-bus inter-

face, we find that implementing it requires less than 1% additional

area on the hardware TCB.

Task 2 is to inform the OS, so that it can start executing the

snapshot driver. This task can be accomplished by raising an interrupt.

The target OS invokes the snapshot driver from the interrupt handler.

To accomplish task 3 , we assume that the trigger device is equipped

with device memory that is readable from the target OS. The analyst

writes the nonce to device memory, and the OS reads it from there,

e.g., after mounting the device as /dev/trigger_device.

3.3 DRAM and Memory Controller Design
SnipSnap relies on on-package DRAM for secure and consistent

snapshots. Today, research groups are actively studying how best to

organize on-package DRAM. Research questions focus on whether

on-package DRAM should be organized as a hardware cache of the

off-chip DRAM i.e., the physical address space is equal to the off-chip

DRAM capacity [52, 62, 77], or should extend the physical address

space instead, i.e., the physical address space is the sum of the off-chip

DRAM and on-chip memory capacities [22, 93]. While SnipSnap can

be implemented on any of these designs, we focus on die-stacked

DRAM caches as they have been widely studied and are expected to

represent initial commercial implementations [52, 53, 62, 77].

DRAM caches can be designed in several ways. They can be used

to cache data in units of cache lines like conventional L1-LLCs [52,

62, 77]. Unfortunately, the fine granularity of cache lines results

in large volumes of tag metadata stored in either SRAM or DRAM

caches themselves [52, 53, 62, 77]. Thus, architects generally prefer

to organize DRAM caches at page-level granularity. While SnipSnap

4(a) During regular operation, on-chip memory is a cache of off-chip DRAM pages.

(1) Accesses by the CPU to a DRAM page brings the page to the on-chip memory, where

it is tagged using its frame number (F). (2) Pages are evicted from on-chip memory

region when it reaches its capacity.

4(b) In snapshot mode, on-chip memory is split in two. (1) The DRAM cache works

as in Figure 4(a). (2) If there is a write to a page that has not yet been snapshot (i.e., F
≥ R), it is copied into the CoW area. (3) The page may be evicted if the DRAM cache

reaches capacity. (4) The CoW area copy of the page remains until it has been included

in the snapshot (i.e., F < R), after which it is overwritten with other pages that enter

the CoW area. In snapshot mode H and R are initialized to 0.

Figure 4: Layout of on-chip memory.

can be built using any DRAM cache data granularity, we focus on

such page-level data caching approaches.

Overall, as a hardware-managed cache, the DRAM cache is not

directly addressable from user- or kernel-mode. Further, all DRAM

references are mediated by an on-chip memory controller, which is

responsible for relaying the access to on-package or off-chip DRAM.

That is, CPU memory references are first directed to per-core MMUs

before being routed to the memory controller, while device memory

references (e.g., using DMA) are directed to the IOMMU before being

routed to the memory controller.

Regular Operation.When snapshot acquisition is not in progress,

SnipSnap’s on-package memory acts as a hardware DRAM cache,

before off-chip DRAM (see Figure 4(a)). The DRAM cache stores data

in the unit of pages, and maintains tags, as is standard, to identify

the frame number of the page cached and additional bits to denote

usage information, like valid and replacement policy bits. When a

new page must be brought into an already-full cache, the memory

controller evicts a victim using standard replacement policies.

Snapshot Mode. When the trigger device signals the hardware to

enter snapshot mode, several hardware operations occur. First, the

hardware captures the CPU register state of the machine (across all

cores). Second, all CPUs are paused, their pipelines are drained, their

cache contents flushed (if CPUs use write-back caches), and their

load-store queues and write-back buffers drained. These steps ensure

that all dirty cache line contents are updated in main memory before

snapshot acquisition begins. Third, SnipSnap’s memory controller

Secure, Consistent, and High-Performance Memory Snapshotting CODASPY ’18, March 19–21, 2018, Tempe, AZ, USA

reconfigures the organization of on-package DRAM to ensure that a

consistent snapshot of memory is captured. It must track any modifi-

cations to memory pages that are not yet included in the snapshot

and keep a copy of the original page till it has been copied to the

snapshot.

To achieve this goal, the memory controller splits the on-package

DRAM into two portions (Figure 4(b)). The first portion continues to

serve as a cache of off-chip DRAM memory. Since only this portion

of on-package DRAM is available for caching in snapshot mode, the

memory controller tries to fit in it all the pages that were previously

cached during regular operation into the available space. If all pages

cannot be cached, the memory controller selects and evicts victims

to off-chip DRAM. The second portion of die-stacked memory serves

as a copy-on-write (CoW) area. The CoW area allows user applica-

tions and the kernel to modify memory concurrently with snapshot

acquisition, while saving pages that have not yet been included in

the snapshot. We study several ways to partition on-package DRAM

into the CoW and DRAM cache areas in Section 6.

Recall that a snapshot contains a copy of all pages in off-chip

DRAM memory. However, the hardware creates a snapshot entry

one page of memory at a time. It works in tandem with the snapshot

driver to write this snapshot entry to an external medium and then

iterates to the next page of memory until all pages are written out to

the snapshot. As this iteration proceeds, other applications and the

kernel may concurrently modify memory pages that have not yet

been included in the snapshot. If SnipSnap’s memory controller sees

a write to a memory page that the hardware has not yet copied, the

memory controller creates a copy of the original page in the CoW

area, and lets the write operation proceed in the DRAM cache area. A

page frame is copied at most once into the CoW area, and this happens

only if the page has to be modified by other applications before it

has been copied into the snapshot.

The memory controller maintains internal hardware state in the

form of an index that stores the frame number (R in Figure 4(b)) of the

page that is currently being processed for inclusion in the snapshot.

The hardware initializes the index to 0 when it enters snapshot mode.

The memory controller uses the index as follows. It copies a frame F
from the DRAM cache to the CoW area when it has to write to that

frame and F ≥ R, indicating that the hardware has not yet iterated

to frame F to create a snapshot entry for it. If F < R, then it means

that the frame has already been included in the snapshot, and can be

modified without copying it to the CoW area. SnipSnap requires that

page frames be copied into the snapshot sequentially in ascending

order by frame number.

To create a new snapshot entry for a page frame, the memory

controller first checks whether this page frame is in the CoW area. If

it exists, the hardware proceeds to create a snapshot entry using that

copy of the page. The memory controller can then reuse the space

occupied by this page in the CoW area. If the page frame is not in the

CoW area, the memory controller checks to see if it already exists

in the DRAM cache. If not, it brings the page from off-chip DRAM

into the DRAM cache, from where the hardware creates a snapshot

entry for that page. It places the newly-created entry in a physical

page frame referenced by the snapshot entry register (snapentry_reg
in Figure 4), and informs the snapshot driver using the semaphore

register (semaphore_reg in Figure 4). The driver then writes out the

entry to a suitable external medium and informs the hardware, which

increments the index and iterates to the next page frame.

The hardware exits snapshot mode when the index has iterated

over all the frames of off-chip DRAM. At this point, the hardware

creates a snapshot entry containing the CPU register state (captured

on entry into snapshot mode), and appends it as the last entry of the

snapshot. We leverage die-stacked logic to capture and record register

state. SnipSnap’s approach is inspired by prior work on introspective

die-stacked logic [69], where hardware analysis logic built on die-

stacked layers uses probes or “stubs” on the CPUs to introspect on

dynamic type analysis, data flight recorders, etc. Similarly, we design

hardware support to capture register state, using: 1 stubs that allow

the contents of the register file to be latched into the logic on the

die-stack; and 2 logic on the die-stack that copies the contents of

register files into the last snapshot entry.

The memory controller’s use of CoW ensures that concurrent

applications can make progress, while still maintaining the original

copies of memory pages for a consistent snapshot. The hardware

pauses a user application during snapshot acquisition only when

the CoW area fills to capacity and when that application attempts to

write to a page that the hardware has not yet included in the snapshot.

In this case, the hardware can resume these applications when space

is available in the CoW area, i.e., when a page from there is copied to

the snapshot.

Our implementation of SnipSnap has important design implica-

tions on recently-proposed DRAM caches. Research has shown that

DRAM caches generally performmost efficiently when they use page-

sized allocation units to reduce tag array size requirements [52, 53].

However, they also employ memory usage predictors (e.g., footprint

predictors [52, 53]) to fetch only the relevant 64B blocks from a page,

thereby efficiently using scarce off-chip bandwidth by not fetching

blocks that will not be used. This means the following for SnipSnap.

During regular operation, SnipSnap continues to employ page-based

DRAM caches with standard footprint prediction. However, to sim-

plify our design, SnipSnap does not use footprint prediction during

snapshot mode and moves entire pages of data with their constituent

cache lines in both the CoW and DRAM cache partitions. Naturally,

this does degrade performance of applications running simultane-

ously with snapshotting; however, our results (see Section 6) show

that performance improvements versus current snapshotting tech-

niques remain high.

3.4 Near-Memory Processing Logic
Near-memory processing logic implements cryptographic function-

ality to create the snapshot. On a target machine with N frames of

off-chip DRAMmemory, the snapshot itself containsN+1 entries. The
first N entries store, in order, the contents of page frames 0 to N-1 of
memory (thus, an individual snapshot entry is 4KB). The last entry of

the snapshot stores the CPU register state and a cryptographic digest

that allows a forensic analyst to determine the integrity, freshness

and completeness of the snapshot.

The near-memory processing logic maintains an internal hash

accumulator that is initialized to zero when the hardware enters snap-

shot mode. It updates the hash accumulator as the memory controller

iterates over memory pages, recording them in the snapshot. Suppose

that we denote the value of the hash accumulator using Hidx, where
idx denotes the current value of the memory controller’s index (thus,

H0 = 0). When the memory controller creates a snapshot entry for

page frame numbered idx, the near-memory processing logic updates

the value of the hash accumulator toHidx+1=Hash(idx ∥ r ∥ Hidx ∥ Cidx).
Here:

1 The value idx is the hardware’s index. It records the frame number

of the page that included in the snapshot;

2 The value r denotes a random nonce supplied by the forensic

analyst using the trigger device and stored in the on-chip nonce

register (nonce_reg in Figure 4(b)). The use of the nonce ensures

freshness of the snapshot;

3 Hidx denotes the current value of the hash accumulator;

4 Cidx denotes the actual contents of page frame idx.

CODASPY ’18, March 19–21, 2018, Tempe, AZ, USA G. Cox et al.

Figure 5: Pseudocode of the snapshot driver and the corresponding hardware/software interaction.

All these values are readily available on-chip.

When the memory controller finishes iterating over all N mem-

ory page frames, the value HN in the hash accumulator in effect

denotes the value of a hash chain computed cumulatively over all

off-chip DRAM memory pages. The final snapshot entry enlists the

values of CPU registers as recorded by the hardware when it entered

snapshot mode—let us denote the CPU register state using Creg. The
near-memory logic updates the hash accumulator one final time to

create HN+1=Hash(N ∥ r ∥ HN ∥ Creg). It digitally signs HN+1 using
the hardware’s private key, and records the digital signature in the

last entry of the snapshot. This digital signature assists with the

verification of snapshot integrity (Section 4). We use SHA-256 as our

hash function, which outputs a 32-byte hash value. The size of the

digital signature depends on the key length used by the hardware.

For instance, a 1024-bit RSA key would produce a 86-byte signature

for a 32-byte hash value with OAEP padding.

3.5 Snapshot Driver and HW/SW Interface
The hardware relies on the target’s OS to externalize the snapshot

entries that it creates. We rely on software support for this task

because it simplifies hardware design, and also provides the forensic

analyst with considerable flexibility in choosing the external medium

to which the snapshot must be committed. Although we rely on the

target OS for this critical task, we do not need to trust the OS and even

a malicious OS cannot corrupt the snapshot created by the hardware.

The hardware and the software interact via an interface consisting

of three registers (nonce, snapshot entry and semaphore registers),

which were referenced earlier. Figure 5 shows the software compo-

nent of SnipSnap and the hardware/software interaction. SnipSnap’s

software component consists of initialization code that executes at

kernel startup (lines A–C) and a snapshot driver that is invoked when

the hardware enters snapshot mode (lines 1–13). The implementation

of the snapshot driver in the target OS depends on the trigger device

and executes as a kernel thread. For example, if the trigger device

raises an interrupt to notify the target OS that the hardware has

switched to snapshot mode, the snapshot driver can be implemented

within the corresponding interrupt handler. If the trigger device in-

stead uses ACPI events for notification, the snapshot driver can be

implemented as an ACPI event handler.

In the initialization code, SnipSnap allocates a buffer (the plocal
buffer) that is the size of one snapshot entry. This buffer serves as

the temporary storage area in which the hardware stores entries of

the snapshot before they are committed to an external medium. It

then obtains and stores the physical address translation of plocal
in snapentry_reg, The hardware uses this physical address to store

computed snapshot entries into the plocal buffer and the snapshot

driver writes it out. Pages allocated using kmalloc cannot be moved,

ensuring that the buffer is in the same location for the duration of

the snapshot driver’s execution. If the page moves, e.g., because of

a malicious implementation of kmalloc, or if virt_to_phys returns

an incorrect virtual to physical translation, the snapshot will appear

corrupted to the forensic analyst.

When hardware enters snapshot mode, it initializes its internal

index and hash accumulator, captures CPU register state, and invokes

SnipSnap’s snapshot driver. The goal of the snapshot driver is to work

in tandem with the hardware to create and externalize one snapshot

entry at a time. The snapshot driver and the hardware coordinate

using the semaphore register, which the driver first initializes to

a non-zero value on line 3. It then reads the nonce value that the

forensic analyst supplies via the trigger device. Writing this non-zero

value into nonce_reg on line 4 activates the near-memory processing

logic, which creates a snapshot entry for the page frame referenced

by the hardware’s internal index.

In the loop on lines 6–10, the snapshot driver iterates over all

page frames in tandem with the hardware. Each iteration of the loop

body processes one page frame. The hardware begins processing the

first page of DRAM as soon as line 4 sets nonce_reg, and stores the

snapshot entry for this page in the plocal buffer. On line 7, the driver

waits for the hardware to complete this operation. The hardware

informs the driver that the plocal buffer is ready with data by setting

semaphore_reg to 0. The driver then commits the contents of this

buffer to an external medium, denoted using write_out on line 8.

The driver then sets semaphore_reg to a non-zero value on line 9,

indicating to the hardware that it can increment its index and iterate

to the next page for snapshot entry creation. Note that the time taken

to execute this loop depends on the number of page frames in off-chip

DRAM and the speed of the external storage medium.

When the loop completes execution, the hardware would have

iterated through all DRAM page frames and exited snapshot mode.

When it exits, it writes out the CPU register state captured during

snapshot mode-entry and the digitally-signed value of the hash ac-

cumulator to the plocal buffer, which the snapshot driver can then

output on line 12.

3.6 Formal Verification
We used TLA+ [57] to formally verify that SnipSnap produces con-

sistent snapshots. To do so, we created a system model that mimics

Secure, Consistent, and High-Performance Memory Snapshotting CODASPY ’18, March 19–21, 2018, Tempe, AZ, USA

SnipSnap’s memory controller in snapshot mode and during regular

operation. Our TLA+ system model can be instantiated for various

configurations, such as memory sizes, cache sizes, and cache asso-

ciativities. We encoded consistency as a safety property by checking

that the state of the on-package and off-chip DRAM at the instant

when the system switches to snapshot mode will be recorded in

the snapshot at the end of acquisition. We verified that our system

model satisfies this property using the TLA+ model checker. Our

TLA+ model of SnipSnap is open source [3].

4 SECURITY ANALYSIS
When a forensic analyst receives a snapshot acquired by SnipSnap, he

establishes its integrity, freshness, and completeness. In this section,

we describe how these properties can be established, and show how

SnipSnap is robust to attempts by a malicious target OS to subvert

them.

1 Integrity. An infected target OS may attempt to corrupt snap-

shot entries to hide traces of malicious activity from the forensic

analyst. To ensure that the integrity of the snapshot has not been

corrupted, an analyst can check the digital signature of the hash accu-

mulator stored in the last snapshot entry. The analyst performs this

check by essentially mimicking the operation of SnipSnap’s memory

controller and near-memory processing logic, i.e., iterating over the

snapshot entries in order to recreate the value of the hash accumula-

tor, and verify its digital signature using the hardware’s public key.

Since the hash accumulator is stored and updated by the hardware

TCB, which also computes its digital signature, a malicious target

cannot change snapshot entries after they have been computed by

the hardware.

2 Freshness. The forensic analyst supplies a random nonce via the

trigger device when he requests a snapshot. SnipSnap’s hardware

TCB incorporates this nonce into the hash accumulator computation

for each memory page frame, thereby ensuring freshness. Note that

SnipSnap uses the untrusted snapshot driver to transfer the nonce

from trigger device memory into the hardware’s nonce register (line 4

of Figure 5). A malicious target OS cannot cheat in this step, because

the nonce is incorporated into the hardware TCB’s computation of

the hash accumulator.

3 Completeness. The snapshot should contain one entry for each

page frame in off-chip DRAM and one additional entry storing CPU

register state. This criterion ensures that a malicious target OS cannot

suppress memory pages from being included in the snapshot. Each

snapshot entry is created by the hardware, by directly reading the

frame number and page contents from die-stacked memory, thereby

ensuring that these entities are correctly recorded in the entry.

Our attack analysis focuses on how a malicious target OS can sub-

vert snapshot acquisition. A forensic analyst uses the trigger device

to initiate snapshot acquisition by toggling the hardware TCB into

snapshot mode. The trigger device communicates directly with Snip-

Snap’s hardware TCB using hardware-to-hardware communication,

transparent to the target’s OS, and therefore cannot be subverted

by a malicious OS. The hardware then notifies the OS that it is in

snapshot mode, expecting the snapshot driver to be invoked.

A malicious target OS may attempt to “clean up” traces of infection

before it jumps to the snapshot driver’s code so that the resulting

snapshot appears clean during forensic analysis. However, once the

hardware is in snapshot mode, SnipSnap’s memory controller, which

mediates all writes to DRAM, uses the CoW area to track modifica-

tions to memory pages. Even if the target’s OS attempts to overwrite

the contents of a malicious page, the original contents of the page

are saved in the CoW area to be included in the snapshot. Thus, any

attempts by the target OS to hide its malicious activities after the

hardware enters snapshot mode are futile. Of course, the target OS

could refuse to execute the snapshot driver, which will prevent the

snapshot from being written out to an external medium. Such a denial

of service attack is therefore readily detectable.

A malicious OS may try to interfere with the execution of the

initialization code in lines A–C of Figure 5. The initialization code

relies on the correct operation of kmalloc and virt_to_phys. However,
we do not have to trust these functions. If kmalloc fails to allocate a

page, snapshots cannot be obtained from the target, resulting in a

detectable denial of service attack. If the pages allocated by kmalloc
are remapped during execution or virt_to_phys does not provide

the correct virtual to physical mapping for the allocated space, the

write_out operation on line 8 will write out incorrect entries that fail

the Integrity check.

Once the snapshot driver starts execution, a malicious target OS

can attempt to interfere with its execution. If it copies a stale or

incorrect value of the nonce into nonce_reg from trigger device mem-

ory on line 4, the snapshot will violate the Freshness criterion. It

could attempt to bypass or short-circuit the execution of the loop on

lines 5–10. The purpose of the loop is to synchronize the operation

of the snapshot driver with the internal index maintained by Snip-

Snap’s memory controller. If the OS short-circuits the loop or elides

the write_out on line 8 for certain pages, the resulting snapshot will

be missing entries, thereby violating Completeness. Attempts by

the target OS to modify the virtual address of plocal or the value of
snapshot_reg during the execution of the snapshot driver will trigger

a violation of Integrity for the same reasons that attacks on the

initialization code triggers an Integrity violation.

Finally, a malicious target could try to hide traces of infection by

creating a synthetic snapshot that glues together individual entries

(with benign content in their memory pages) from snapshots collected

at different times. However, such a synthetic snapshot will fail the

Integrity check since the hash chain computed over such entries

will not match the digitally-signed value in the last snapshot entry.

The last entry records the values of all CPU registers at the instant

when the hardware entered snapshot mode. For forensic analysis,

the most useful value in this record is that of the page-table base

register (PTBR). As previously discussed, forensic analysis of the

snapshot often involves recursive traversal of pointer values that

appear in memory pages [10, 17, 25, 72–74, 80]. These pointers are

virtual addresses but the snapshot contains physical page frames.

Thus, the forensic analysis translates pointers into physical addresses

by consulting the page table, which it locates in the snapshot using

the PTBR. External hardware-based systems [10, 16, 58, 59, 67, 72, 74]

cannot view the processor’s CPU registers. Therefore, they depend on

the untrusted target OS to report the value of the PTBR. Unfortunately,

this results in address-translation redirection attacks [51, 56]. The

target OS can create a synthetic page table that contains fraudulent

virtual-to-physical mappings and return a PTBR referencing this page

table. The synthetic page table exists for the sole purpose of defeating

forensic analysis by making malicious content unreachable via page-

table translations—it is not used by the target OS during execution.

SnipSnap can observe and record CPU register state accurately when

the hardware enters snapshot mode and is not vulnerable to such

attacks. It captures the PTBR pointing to the page table that is in use

when the hardware enters snapshot mode.

5 EXPERIMENTAL METHODOLOGY
5.1 Evaluation Infrastructure
We use a two-step approach to quantify SnipSnap’s benefits. In the

first step, we perform evaluations on long-running applications with

full-system and OS effects. Since this is infeasible with software sim-

ulation, we develop hardware emulation infrastructure similar to

CODASPY ’18, March 19–21, 2018, Tempe, AZ, USA G. Cox et al.

1 Canneal Simulated annealing from PARSEC [11]

2 Dedup Storage deduplication from PARSEC [11]

3 Memcached In-memory key-value store [66]

4 Graph500 Graph-processing benchmark [38]

5 Mcf Memory-intensive benchmark/SPEC 2006 [83]

6 Cifar10 Image recognition from TensorFlow [87]

7 Mnist Computer vision from TensorFlow [87]

Figure 6: Description of benchmark user applications.

recent work [70] to achieve this. This infrastructure takes an exist-

ing hardware platform, and through memory contention, creates

two different speeds of DRAM. Specifically, we use a two-socket

Xeon E5-2450 processor, with a total of 32GB of memory, running

Debian-sid with Linux kernel 4.4.0. There are 8 cores per socket, each

two-way hyperthreaded, for a total of 16 logical cores per socket.

Each socket has two DDR3 DRAM memory channels. To emulate

our DRAM cache, we dedicate the first socket for execution of our

user applications, our kernel-level snapshot driver, and our user-level

snapshot process. This first socket hosts our “fast” or on-package

memory. The second socket hosts our “slow” or off-chip DRAM. The

cores on the second socket are used to create memory contention

(using the memory contention benchmark memhog, like prior work
[75, 76]) such that the emulated die-stacked memory or DRAM cache

is 4.5× faster compared to the emulated off-chip DRAM. This provides

a similar memory bandwidth performance ratio of a 51.2GBps off-

chip memory system compared to a 256GBps of die-stacked memory,

consistent with the expected performance ratios of real-world die-sta-

cking [62, 70]. We modify Linux kernel to page between the emulated

fast and slow memory, using the libnuma patches. We model the

timing aspects of paging to faithfully reproduce the performance that

SnipSnap’s memory controller would sustain. Since our setup models

CPUs with write-back caches, we include the latencies necessary for

cache, load-store queue, and write buffer flushes on snapshot acqui-

sition. Finally, we emulate the overhead of marshaling to external

media by introducing artificial delays. We vary delay based on several

emulated external media, from fast network connections to slower

SSDs.

While our emulator includes full-system effects and full benchmark

runs, it precludes us from modeling SnipSnap’s effectiveness atop

recently-proposed (and hence not available commercially) DRAM

cache designs. Therefore, we also perform careful software simulation

of the state-of-art UNISON DRAM cache [52], building SnipSnap atop

it. Like the original UNISON cache paper, we assume a 4-way set-

associative DRAM cache with 4KB pages, a 144KB footprint history

table, and an accurate way predictor. Like recent work [93], we use

an in-house simulator and drive it with 50 billion memory reference

traces collected on a real system. We model a 16-core CMP and with

ARMA15-style out-of-order CPUs, 32KB private L1 caches, and 16MB

shared L2 cache. We study die-stacked DRAM with 4 channels, and

8 banks/rank with 16KB row buffers, and 128-bit bus width, like

prior work [53]. Further, we model 16-64GB off-chip DRAM, with 8

banks/rank and 16KB row buffers. Finally, we use the same DRAM

timing parameters as as the original UNISON cache paper [52].

5.2 Workloads
We study the performance implications of SnipSnap by quantifying

snapshot overheads on several memory-intensive applications. We

evaluate such workloads since these are the likeliest to face perfor-

mance degradation due to snapshot acquisition. Even in this “worst-

case,” we show SnipSnap does not excessively hurt performance.

Figure 6 shows our single- and multi-threaded workloads. All

benchmarks are configured to have memory footprints in the range

of 12-14GB, which exceeds the maximum size of die-stacked memory

we emulate (8GB). To achieve large memory footprints, we upgrade

the inputs for some workloads with smaller defaults (e.g., Canneal,

Dedup, and Mcf), so that their memory usage increases. We set up

memcached with a snapshot of articles from the entire Wikipedia

database, with over 10 million entries. Articles are roughly 2.8KB on

average, but also exhibit high object size variance.

6 EVALUATION
We now evaluate the benefits of SnipSnap. We first quantify perfor-

mance, and then discuss its hardware overheads.

6.1 Performance Impact on Target Applications
A drawback of current snapshotting mechanisms is that they must

pause the execution of applications executing on the target to ensure

consistency. SnipSnap does not suffer from this drawback. Figures

7 and 8 quantify these benefits. We plot the slowdown in runtime

(lower is better) with benchmark averages, minima, and maxima, as

we vary on-package DRAM capacity. We separate performance based

on how we externalize snapshots: NICs with 100Gbps, 40Gbps, and

10Gbps throughput, and a solid-state storage disk (SSD) with sequen-

tial write throughput of 900MBps. Larger on-package DRAM (and

hence, larger CoW areas) offer more room to store pages that have

not yet been included in the snapshot. Faster methods to externalize

snapshot entries allow the CoW area to drain quicker. Some of the

configuration points that we discuss are not yet in wide commercial

use. For example, the AMD Radeon R9, a high-end chipset series

supports only up to 4GB of on-package DRAM. Similarly, 40Gbps

and 100Gbps NICs are expensive and not yet in wide use.

Figure 7 shows results collected on our hardware emulator, assum-

ing that 50% of on-package DRAM is devoted to the CoW area during

snapshot mode. We vary the size on-package DRAM from 512MB to

8GB, and assume 16GB off-chip DRAM. Further, our hardware emu-

lator assumes that on-package DRAM is implemented as a page-level

fully-associative cache. We show the performance slowdown due to

idealized current snapshotting mechanisms, as we take 1 and 10 snap-

shots. By idealized, we mean approaches like virtualization-based or

TrustZone-style snapshotting which require pausing applications on

the target to achieve consistency, but which assume unrealizable zero-

overhead transition times to TrustZone mode or zero-overhead vir-

tualization. Despite idealization, current approaches perform poorly.

Even with only one snapshot, runtime increaseas by 1.2-2.4× us-

ing SSDs. SnipSnap fares much better, outperforming the idealized

baseline by 1.2-2.2×, depending on the externalization medium and

on-package DRAM size. Snapshotting more frequently (i.e., 10 snap-

shots) further improves performance by 10.5-22×. Naturally, the more

frequent the snapshotting, the more SnipSnap’s benefits, though our

benefits are significant even with a single snapshot.

Similarly, Figure 8 quantifies SnipSnap’s performance improve-

ments versus current snapshotting, assuming a baseline with state-of-

the-art UNISON cache implementations of on-package DRAM [52],

as UNISON cache sizes are varied from 512MB to 8GB. Some key

differences between UNISON cache and our fully-associative hard-

ware emulated DRAM cache is that UNISON cache also predicts 64B

blocks within pages that should be moved on a DRAM cache miss,

and also is implemented as 4-way set associative (as per the origi-

nal paper). Nevertheless, Figure 8 (collected assuming SSDs as the

externalizing medium) shows that SnipSnap outperforms idealized

versions of current snapshotting mechanisms by as much as 22×, and

by as much as 3× when just a single snapshot is taken.

SnipSnap’s performance also scales far better than idealized ver-

sions of current snapshotting with increasing off-chip DRAM ca-

pacities. Figure 9 compares the performance slowdown due to one

snapshot, as off-chip DRAM varies from 16GB to 64GB. These results

are collected using UNISON cache (8GB in normal operation, 4GB

in snapshot mode, with 4GB CoW), and assuming SSDs. Consider

Secure, Consistent, and High-Performance Memory Snapshotting CODASPY ’18, March 19–21, 2018, Tempe, AZ, USA

512M 2G 8G 512M 2G 8G
Ideal Baseline SnipSnap

1 Snapshot

1

1.2

1.4

1.6

1.8

2

2.2

2.4

512M 2G 8G 512M 2G 8G
Ideal Baseline SnipSnap

10 Snapshots

1

6

11

16

21

26
net-100 net-40 net-10 ssd

Normalized Slowdown for 1 and 10 Snapshot Acquisitions on Hardware Emulator
CoW-nonCoW split 50-50

Figure 7: Performance impact of snapshot acquisition from hardware emulator studies. Slowdown caused by modern snapshot mech-

anisms that also assure consistency, and compare against SnipSnap. We plot results for 1 and 10 snapshots separately (note the different y axes),

showing averages, minima, and maxima amongst benchmark runtimes. X-axis shows the amount of on-package memory available on the emulated

system. SnipSnap provides 1.2-22× performance improvements against current approaches.

512M 2G 8G 512M 2G 8G
Ideal Baseline SnipSnap

10 Snapshots

1

6

11

16

21

26

512M 2G 8G 512M 2G 8G
Ideal Baseline SnipSnap

1 Snapshot

1

1.5

2

2.5

3

3.5

Normalized Slowdown for 1 & 10 Snapshot Acquisitions on UNISON Cache
CoW-nonCoW split 50-50 - SSD

Figure 8: Performance impact of snapshot acquisition from
simulator studies with UNISON cache [52]. SnipSnap outper-

forms idealized versions of current snapshotting approaches by as much

as 22× (graphs show benchmark averages, maxima, and minima).

16GB 32GB 64GB 16GB 32GB 64GB
Ideal Baseline SnipSnap

1

2

3

4

5

6

Normalized Slowdown for One Snapshot Acquisition on UNISON Cache
for Different Off-Chip Memory Sizes

CoW-nonCoW split 50-50 - SSD

Figure 9: Average performance with varying off-chip DRAM
size. Bigger off-chip DRAM takes longer to snapshot, so SnipSnap be-

comes even more advantageous over current idealized approaches. These

results assume UNISON cache with 8GB, split 50:50 in CoW:non-CoW

mode during snapshot acquisition and SSDs, taking just one snapshot.

idealized versions of current snapshotting approaches – runtime in-

creases from 3× with 16GB off-chip DRAM to as high as 5.3× with

64GB of memory, when taking just a single snapshot. More snapshots

further exacerbate this slowdown. While SnipSnap also suffers slow-

down with larger off-chip DRAM, it still vastly outperforms current

approaches by as much as 5× at 64GB of off-chip DRAM.

So far, we have shown application slowdown comparisons of Snip-

Snap versus current approaches. Figure 10 focuses, instead, on per-

benchmark runtime slowdown using SnipSnap, when varying the

size of on-package DRAM and the externalizing medium. Results

show that most benchmarks, despite being data-intensive, remain

unaffected by SnipSnap’s snapshot acquisition. The primary excep-

tions to this are memcached, cfar, and mnist, though their slowdowns

vastly outperform current approaches (see Figures 7 and 8).

6.2 CoW Analysis
As discussed in Section 3, benchmark runtime suffers during snapshot

acquisition only if the CoW area fills to capacity. When this happens,

the benchmark stalls until some pages from the CoW area are copied

to the snapshot. Figure 11 illustrates this fact, and explains the perfor-

mance of memcached. Figure 11 shows the fraction of the CoW area

utilized over time during the execution of memcached. The fraction

of time for which the CoW area is at 100% directly corresponds to the

observed performance of memcached.When CoW utilization is below

100%, as is the case in Figure 11(b) the performance of memcached is

unaffected.

Next, Figure 12 quantifies the performance impact of varying the

percentage of die-stacked memory devoted to the CoW area. We vary

the split from 50-50% to 25-75% and 75-25% for CoW-nonCoW por-

tions, for various externalization techniques. We present the average

results across all workloads for various total die-stacked memory

sizes (individual benchmarks follow these average trends). Figure 12

shows that performance remains strong across all configurations,

even when the percentage of DRAM cache devoted to CoW is low,

which potentially leads to more stalls in the system. Furthermore,

low CoW only degrades performance at smaller DRAM cache sizes

of 512MB, which are smaller than DRAM cache sizes expected in

upcoming systems.

Finally, note that the set-associativity of the DRAM cache devoted

to the CoW region influences SnipSnap’s performance. Specifically,

consider designs like UNISON cache [52] (and prior work like Foot-

print cache [53]), which use 4-way set-associative (and 32-way set-

associative) page-based DRAM caches. In these situations, if an entire

set of the DRAM cache becomes full (even if other sets are not), ap-

plications executing on the target must pause until pages from that

set are written to the external medium (i.e., SSD, network, etc.). Even

in the worst case (all the application’s data maps to a single set so the

CoW region always stalls application execution and writing pages to

the external medium takes as long as the entire snapshot time) this is

no worse that idealized versions of current approaches. However, we

find that this scenario does not occur in practice. Figure 13 quantifies

SnipSnap’s performance versus an ideal baseline for one snapshot,

as off-chip DRAM capacity is varied from 16GB to 64GB, on-chip

DRAM capacity is varied from 512MB to 8GB, and associativity is

varied between 2-way and 4-way. Larger DRAM caches and higher

associativity improve SnipSnap’s performance, but even when we

hamper UNISON cache to be 512MB and 2-way set-associative, it

outperforms idealized current approaches by ∼2×. More frequent

snapshots further increase this number.

Beyond these studies, we also considered quantifying SnipSnap’s

performance on a direct-mapped UNISON cache. However, as pointed

out by prior work, the conflict misses induced by direct-mapping in

baseline designs without snapshotting are so high, that no practical

page-based DRAM cache design is direct-mapped [52, 53]. Therefore,

CODASPY ’18, March 19–21, 2018, Tempe, AZ, USA G. Cox et al.

512M 2G 8G 512M 2G 8G 512M 2G 8G 512M 2G 8G 512M 2G 8G 512M 2G 8G 512M 2G 8G
canneal dedup memcached graph500 mcf cfar10 mnist

0

0.5

1

1.5
2

2.5
Normalized Performance During Snapshot Acquisition net-100 net-40 net-10 ssd

Benchmark User Applications and On-Package Memory Sizes

Figure 10: Performance impact of snapshot acquisition. This chart reports the observed performance of user applications executing on the

target during snapshot acquisition, normalized against their observed performance during regular execution, i.e., no snapshot acquisition. For each of

the seven benchmarks, we report the performance for various sizes of die-stacked memory (50% of which is the CoW area), and for different methods

via which the write_out in Figure 5 writes out the snapshot.

0

50

100

11(a) 512MB of on-chip memory

0

50

100

11(b) 4GB of on-chip memory

Figure 11: CoW area utilization over time for memcached. Y-
axis shows CoW area percentage used to store page frames that have

not yet been included in the snapshot. X-axis denotes execution progress.

We measured CoW utilization for every 1024 snapshot entries recorded.

The two charts show CoW utilization trends for various sizes of die-

stacked memory and for different methods to write out the snapshot:

. Snapshot acquisition does not

impact memcached performance when CoW utilization is below 100%.

50-50 25-75 75-25 25-75 75-25 50-50 25-75 75-25
512M 8G

0

0.5

1

1.5

Normalized Average Performance During Snapshot Acquisition
(Varying CoW-nonCoW split) net-100 net-40 net-10 ssd

50-50
2G

Figure 12: Performance impact of snapshot acquisition for dif-
ferent CoW-Cache partitions. Y-axis shows average performance

impact of all benchmarks to take a snapshot, varying CoW-nonCoW

partition for different cache sizes. X-axis shows different total sizes of

die-stacked memory and various ways in which to partition die-stacked

memory for CoW (50%, 25% and 75% for CoW).

16
G

B

32
G

B

64
G

B

16
G

B

32
G

B

64
G

B

16
G

B

32
G

B

64
G

B

16
G

B

32
G

B

64
G

B

512MB (on) 8GB (on) 512MB (on) 8GB (on)
2-way 4-way

1

2

3

4

5

6
Ideal Baseline SnipSnap

(o
ff)

(o
ff)

(o
ff)

(o
ff)

(o
ff)

(o
ff)

(o
ff)

(o
ff)

(o
ff)

(o
ff) (o
ff)

(o
ff)

Normalized Slowdown for One Snapshot Acquisition on UNISON Cache for
Different Off-Chip Memory Sizes and DRAM Cache Organizations

CoW-nonCoW split 50-50 - SSD

Figure 13: Performance as size and set-associativty of UNISON
cache changes. Lower UNISON cache size and set-associativity in-

creases the chances that a set in the CoW region fills up and pauses

execution of applications on the target. Results are shown using SSDs,

varying off-chip DRAM capacity from 16GB to 64GB, UNISON cache

size from 512MB to 8GB, and set-associativity from 2 to 4 way.

we begin our analysis with 2-way set-associative DRAM caches,

showing that SnipSnap consistently outperforms alternatives.

7 RELATEDWORK
As Section 1 discusses, there is much prior work on remote memory

acquisition based on virtualization, trusted hardware and external

hardware. Figure 1 characterizes the difference between SnipSnap

and this prior work. Aside from these, there are other mechanisms to

fetch memory snapshots for the purpose of debugging (e.g., [37, 42,

54, 84, 86]). Because their focus isn’t forensic analysis, these systems

do not assume an adversarial target OS.

Prior work has leveraged die-stacking to implement myriad secu-

rity features such as monitoring program execution, access control

and cryptography [46–48, 64, 69, 89–91]. This work observes that

die-stacking allows processor vendors to decouple core CPU logic

from “add-ons,” such as security, thereby improving their chances

of deployment. Our work also leverages additional circuitry on the

die-stack to implement the logic needed for memory acquisition.

Unlike prior work, which focused solely on additional processing

logic integrated using die-stacking, our focus is also on die-stacked

memory, which is beginning to see deployment in commercial proces-

sors. While SnipSnap also uses the die-stack to integrate additional

cryptographic logic and modify the memory controller, it does so to

enable near-data processing on the contents of die-stacked memory.

Prior work has also used die-stacked manufacturing technology to

detect malicious logic inserted into the processor. The threat model

is that of an outsourced chip manufacturer who can insert Trojan-

horse logic into the hardware. This work suggests various methods to

combat this threat using die-stacked manufacturing. For example, one

method is to divide the implementation of a circuit across multiple

layers in the stack, each manufactured by a separate agent, thereby

obfuscating the functionality of individual layers [49, 88]. Another

method is to add logic into die-stacked layers tomonitor the execution

of the processor for maliciously-inserted logic [12–14].

There is prior work on near-data processing to enable security

applications [40] and modifying memory controllers to implement

a variety of security features [82, 92]. There is also work on using

programmable DRAM [59] to monitor systems for OS and hypervisor

integrity violations. Unlike SnipSnap, which focuses on fetching a

complete snapshot of DRAM, and must hence consider snapshot

consistency, this work only focuses on analysis of specific memory

pages, e.g., those that contain specific kernel data structures. It also

cannot access CPU register state, making it vulnerable to address-

translation attacks [51, 56].

8 CONCLUSION
Vendors are beginning to integrate memory and processing logic

on-chip using on-package DRAM manufacturing technology. We

have presented SnipSnap, an application of this technology to se-

cure memory acquisition. SnipSnap has a hardware TCB, and allows

forensic analysts to collect consistent memory snapshots from a tar-

get machine while offering performance isolation for applications

executing on the target. Our experimental evaluation on a number

of data intensive workloads shows the benefit of our approach.

Dedication andAcknowledgments.Wewould like to dedicate this

paper to the memory of our friend, colleague and mentor, Professor

Liviu Iftode (1959-2017). This work was funded in part by NSF grants

1319755, 1337147, 1420815, and 1441724.

Secure, Consistent, and High-Performance Memory Snapshotting CODASPY ’18, March 19–21, 2018, Tempe, AZ, USA

REFERENCES
[1] [n. d.]. Docker – Build, Ship and Run Any App, Anywhere. ([n. d.]). https:

//www.docker.com/.
[2] [n. d.]. Rekall Forensics – We can remember it for you wholesale! ([n. d.]). http:

//www.rekall-forensic.com/.
[3] [n. d.]. TLA+ model of SnipSnap. ([n. d.]). http://bit.ly/2mOCY23.
[4] [n. d.]. Volatility – An advanced memory forensics framework. ([n. d.]). https:

//github.com/volatilityfoundation/volatility.
[5] 2009. ARM Security Technology – Building a Secure System us-

ing TrustZone Technology. (2009). ARM Technical Whitepaper.

http://infocenter.arm.com/help/topic/com.arm.doc.prd29-genc-009492c/
PRD29-GENC-009492C_trustzone_security_whitepaper.pdf.

[6] J. Ahn, S. Hong, S. Yoo, O. Mutlu, and K. Choi. 2015. A Scalable Processing-in-

Memory Accelerator for Parallel Graph Processing. In International Symposium on

Computer Architecture (ISCA).

[7] J. Ahn, S. Yoo, O. Mutlu, and K. Choi. 2015. PIM-Enabled Instructions: A Low-

Overhead, Locality-Aware Processing-in-Memory Architecture. In International

Symposium on Computer Architecture (ISCA).

[8] William Arbaugh. [n. d.]. Komoku. In https://www.cs.umd.edu/~waa/UMD/Home.
html.

[9] A. Azab, P. Ning, J. Shah, Q. Chen, R. Bhutkar, G. Ganesh, J. Ma, and W. Shen. 2014.

Hypervision Across Worlds: Real-time Kernel Protection from the ARM TrustZone

Secure World. In ACM Conference on Computer and Communications Security (CCS).

[10] A. Baliga, V. Ganapathy, and L. Iftode. 2011. Detecting Kernel-level Rootkits using

Data Structure Invariants. IEEE Transactions on Dependable and Secure Computing

8, 5 (2011).

[11] C. Bienia, S. Kumar, J. P. Singh, and K. Li. 2008. The PARSEC benchmark suite: char-

acterization and architectural implications. In Parallel Architectures and Compilation

Techniques (PACT).

[12] M. Bilzor. 2011. 3D executionmonitor (3D-EM): Using 3D circuits to detect hardware

malicious inclusions in general purpose processors. In 6th International Conference

on Information Warfare and Security.

[13] M. Bilzor, T. Huffmire, C. Irvine, and T. Levin. 2011. Security Checkers: Detecting

Processor Malicious Inclusions at Runtime. In IEEE International Symposium on

Hardware-oriented Security and Trust.

[14] M. Bilzor, T. Huffmire, C. Irvine, and T. Levin. 2012. Evaluating Security Require-

ments in a General-purpose Processor by Combining Assertion Checkers with

Code Coverage. In IEEE International Symposium on Hardware-oriented Security

and Trust.

[15] B. Black, M. Annavaram, E. Brekelbaum, J. DeVale, L. Jiang, G. Loh, D. McCauley,

P. Morrow, D. Nelson, D. Pantuso, P. Reed, J. Rupley, S. Shankar, J. P. Shen, and

C. Webb. 2006. Die Stacking 3D Microarchitecture. In International Symposium on

Microarchitecture (MICRO).

[16] A. Bohra, I. Neamtiu, P. Gallard, F. Sultan, and L. Iftode. 2004. Remote Repair of

Operating System State Using Backdoors. In International Conference on Autonomic

Computing (ICAC).

[17] M. Carbone, W. Cui, L. Lu, W. Lee, M. Peinado, and X. Jiang. 2009. Mapping Kernel

Objects to Enable Systematic Integrity Checking. In ACM Conference on Computer

and Communications Security (CCS).

[18] Andrew Case and Golden G. Richard. 2017. Memory forensics: The path forward.

Digital Investigation 20 (2017), 23 – 33. https://doi.org/10.1016/j.diin.2016.12.004
Special Issue on Volatile Memory Analysis.

[19] Michael Chan, Heiner Litz, and David R. Cheriton. 2013. Rethinking Network Stack

Design with Memory Snapshots. In Proceedings of the 14th USENIX Conference on

Hot Topics in Operating Systems (HotOS’13). USENIX Association, Berkeley, CA,

USA, 27–27. http://dl.acm.org/citation.cfm?id=2490483.2490510
[20] R. Chaves, G. Kuzmanov, L. Sousa, and S. Vassiliadis. 2006. Improving SHA-2

Hardware Implementations. In IACR International Cryptology Conference (CRYPTO).

[21] David Cheriton, Amin Firoozshahian, Alex Solomatnikov, John P. Stevenson, and

Omid Azizi. 2012. HICAMP: Architectural Support for Efficient Concurrency-safe

Shared Structured Data Access. In Proceedings of the Seventeenth International

Conference on Architectural Support for Programming Languages and Operating

Systems (ASPLOS XVII). ACM, New York, NY, USA, 287–300. https://doi.org/10.
1145/2150976.2151007

[22] C.-C. Chou, A. Jaleel, and M. K. Qureshi. 2012. CAMEO: A Two-Level Memory

Organization with Capacity of Main Memory and Flexibility of Hardware-Managed

Cache. In International Symposium on Microarchitecture (MICRO).

[23] Lei Cui, Tianyu Wo, Bo Li, Jianxin Li, Bin Shi, and Jinpeng Huai. 2015. PARS: A

Page-Aware Replication System for Efficiently Storing Virtual Machine Snapshots.

In Proceedings of the 11th ACM SIGPLAN/SIGOPS International Conference on Virtual

Execution Environments (VEE ’15). ACM, New York, NY, USA, 215–228. https:
//doi.org/10.1145/2731186.2731190

[24] W. Cui, M. Peinado, S. K. Cha, Y. Fratantonio, and V. P. Kemerlis. 2016. RETracer:

Triaging Crashes by Reverse Execution from Partial Memory Dumps. In Interna-

tional Conference on Software Engineering (ICSE).

[25] W. Cui, M. Peinado, Z. Xu, and E. Chan. 2012. Tracking Rootkit Footprints with a

Practical Memory Analysis System. In USENIX Security Symposium.

[26] CVE-2007-4993. [n. d.]. Xen guest root escapes to dom0 via pygrub. ([n. d.]).

[27] CVE-2007-5497. [n. d.]. Integer overflows in libext2fs in e2fsprogs. ([n. d.]).

[28] CVE-2008-0923. [n. d.]. Directory traversal vulnerability in the Shared Folders

feature for VMWare. ([n. d.]).

[29] CVE-2008-1943. [n. d.]. Buffer overflow in the backend of XenSource Xen ParaVir-

tualized Frame Buffer. ([n. d.]).

[30] CVE-2008-2100. [n. d.]. VMWare buffer overflows in VIX API let local users execute

arbitrary code in host OS. ([n. d.]).

[31] Bernhard Egger, Erik Gustafsson, Changyeon Jo, and Jeongseok Son. 2015. Effi-

ciently Restoring Virtual Machines. International Journal of Parallel Programming

43, 3 (2015), 421–439. https://doi.org/10.1007/s10766-013-0295-0
[32] Wikipedia entry. [n. d.]. eDRAM. In https://en.wikipedia.wiki/EDRAM.

[33] Q. Feng, A. Prakash, H. Yin, and Z. Lin. 2014. MACE: High-Coverage and Robust

Memory Analysis for Commodity Operating Systems. In Annual Computer Security

Applications Conference (ACSAC).

[34] H. Fujita, N. Dun, Z. A. Rubenstein, and A. A. Chien. 2015. Log-Structured Global

Array for Efficient Multi-Version Snapshots. In 2015 15th IEEE/ACM International

Symposium on Cluster, Cloud and Grid Computing. 281–291. https://doi.org/10.1109/
CCGrid.2015.80

[35] T. Garfinkel and M. Rosenblum. 2003. A Virtual Machine Introspection Based

Architecture for Intrusion Detection. In Network and Distributed System Security

Symposium (NDSS).

[36] X. Ge, H. Vijayakumar, and T. Jaeger. 2014. Sprobes: Enforcing Kernel Code Integrity

on the TrustZone Architecture. In IEEE Mobile Security Technologies Workshop

(MoST).

[37] Google. [n. d.]. Using DDMS for debugging. ([n. d.]). http://developer.android.
com/tools/debugging/ddms.html.

[38] Graph500. [n. d.]. http://www.graph500.org.
[39] Mariano Graziano, Andrea Lanzi, and Davide Balzarotti. 2013. Hypervisor Memory

Forensics. Springer Berlin Heidelberg, Berlin, Heidelberg, 21–40. https://doi.org/10.
1007/978-3-642-41284-4_2

[40] A. Gundu, A. S. Ardestani, M. Shevgoor, and R. Balasubramonian. 2014. A Case for

Near Data Security. In 3rd Workshop on Near Data Processing.

[41] M. Healy, K. Athikulwongse, R. Goel, M. Hossain, D. H. Kim, Y. Lee, D. Lewis, T.

Lin, C. Liu, M. Jung, B. Ouellette, M. Pathak, H. Sane, G. Shen, D. H. Woo, X. Zhao,

G. Loh, H. Lee, and S. Lim. 2010. Design and Analysis of 3D-MAPS: A Many-Core

3D Processor with Stacked Memory. In IEEE Custom Integrated Circuits Conference

(CICC).

[42] A. P. Heriyanto. 2013. Procedures and tools for acquisition and analysis of volatile

memory on Android smartphones. In 11th Australian Digital Forensics Conference.

[43] O. S. Hofmann, A. M. Dunn, S. Kim, I. Roy, and E. Witchel. 2011. Ensuring Operating

System Kernel Integrity with OSck. In International Conference on Architectural

Support for Programming Languages and Operating Systems (ASPLOS).

[44] K. Hsieh, E. Ebrahimi, G. Kim, N. Chatterjee, M. O’Connor, N. Vijaykumar, O.

Mutlu, and S. Keckler. 2015. Transparent Offloading and Mapping (TOM): Enabling

Programmer-Transparent Near-Data Processing in GPU Systems. In International

Symposium on Computer Architecture (ISCA).

[45] Y. Huang, R. Yang, L. Cui, T. Wo, C. Hu, and B. Li. 2014. VMCSnap: Taking

Snapshots of Virtual Machine Cluster with Memory Deduplication. In 2014 IEEE

8th International Symposium on Service Oriented System Engineering. 314–319.

https://doi.org/10.1109/SOSE.2014.45
[46] T. Huffmire, T. Levin, M. Bilzor, C. Irvine, J. Valamehr, M. Tiwari, and T. Sherwood.

2010. Hardware Trust Implications of 3-D Integration. InWorkshop on Embedded

Systems Security.

[47] T. Huffmire, T. Levin, C. Irvine, R. Kastner, and T. Sherwood. 2011. 3-D Extensions for

Trustworthy Systems. In International Conference on Engineering of Reconfigurable

Systems and Algorithms (ERSA).

[48] T. Huffmire, J. Valamehr, T. Sherwood, R. Kastner, T. Levin, T. Nguyen, and C.

Irvine. 2008. Trustworthy System Security through 3-D Integrated Hardware. In

International Workshop on Hardware-oriented Security and Trust.

[49] F. Imeson, A. Emtenan, S. Garg, and M. Tripunitara. 2013. Securing Computer

Hardware using 3D Integrated Circuit Technology and Split Manufacturing for

Obfuscation. In USENIX Security Symposium.

[50] InfiniBand. [n. d.]. The InfiniBand Trade Association—The InfiniBand
TM

Architec-

ture Specification. ([n. d.]). http://www.infinibandta.org.
[51] D. Jang, H. Lee, M. Kim, D. Kim, D. Kim, and B. Kang. 2014. ATRA: Address

Translation Redirection attack against Hardware-based External Monitors. In ACM

Conference on Computer and Communications Security (CCS).

[52] D. Jevdjic, G. Loh, C. Kaynak, and B. Falsafi. 2014. Unison Cache: A Scalable and Ef-

fective Die-Stacked DRAM Cache. In International Symposium on Microarchitecture

(MICRO).

[53] D. Jevdjic, S. Volos, and B. Falsafi. 2013. Die-stacked dram caches for servers:

Hit ratio, latency, or bandwidth? have it all with footprint cache. In International

Symposium on Computer Architecture (ISCA).

[54] Joint Test Action Group (JTAG). 2013. 1149.1-2013 - IEEE Standard for Test Access

Port and Boundary-scan Architecture. (2013). http://standards.ieee.org/findstds/
standard/1149.1-2013.html.

[55] K. Kortchinsky. 2009. Hacking 3D (and Breaking out of VMWare). In BlackHat

USA.

https://www.docker.com/
https://www.docker.com/
http://www.rekall-forensic.com/
http://www.rekall-forensic.com/
http://bit.ly/2mOCY23
https://github.com/volatilityfoundation/volatility
https://github.com/volatilityfoundation/volatility
http://infocenter.arm.com/help/topic/com.arm.doc.prd29-genc-009492c/PRD29-GENC-009492C_trustzone_security_whitepaper.pdf
http://infocenter.arm.com/help/topic/com.arm.doc.prd29-genc-009492c/PRD29-GENC-009492C_trustzone_security_whitepaper.pdf
https://www.cs.umd.edu/~waa/UMD/Home.html
https://www.cs.umd.edu/~waa/UMD/Home.html
https://doi.org/10.1016/j.diin.2016.12.004
http://dl.acm.org/citation.cfm?id=2490483.2490510
https://doi.org/10.1145/2150976.2151007
https://doi.org/10.1145/2150976.2151007
https://doi.org/10.1145/2731186.2731190
https://doi.org/10.1145/2731186.2731190
https://doi.org/10.1007/s10766-013-0295-0
https://en.wikipedia.wiki/EDRAM
https://doi.org/10.1109/CCGrid.2015.80
https://doi.org/10.1109/CCGrid.2015.80
http://developer.android.com/tools/debugging/ddms.html
http://developer.android.com/tools/debugging/ddms.html
http://www.graph500.org
https://doi.org/10.1007/978-3-642-41284-4_2
https://doi.org/10.1007/978-3-642-41284-4_2
https://doi.org/10.1109/SOSE.2014.45
http://www.infinibandta.org
http://standards.ieee.org/findstds/standard/1149.1-2013.html
http://standards.ieee.org/findstds/standard/1149.1-2013.html

CODASPY ’18, March 19–21, 2018, Tempe, AZ, USA G. Cox et al.

[56] Y. Kinebuchi, S. Butt, V. Ganapathy, L. Iftode, and T. Nakajima. 2013. Monitoring

System Integrity using Limited Local Memory. IEEE Transactions on Information

Forensics and Security 8, 7 (2013).

[57] L. Lamport. 2002. Specifying Systems: The TLA+ Language and Tools for Hardware

and Software Engineers. Pearson Education.

[58] H. Lee, H. Moon, D. Jang, K. Kim, J. Lee, Y. Paek, and B. Kang. 2013. KI-Mon: A

hardware-assisted event-triggered monitoring platform for mutable kernel objects.

In USENIX Security Symposium.

[59] Z. Liu, J. Lee, J. Zeng, Y. Wen, Z. Lin, and W. Shi. 2013. CPU-transparent protection

of OS kernel and hypervisor integrity with programmable DRAM. In International

Symposium on Computer Architecture (ISCA).

[60] G. Loh. 2008. 3D-Stacked Memory Architectures for Multi-Core Processors. In

International Symposium on Computer Architecture (ISCA).

[61] G. Loh. 2009. Extending the Effectiveness of 3D-Stacked DRAM Caches with an

Adaptive Multi-Queue Policy. In International Symposium on Microarchitecture

(MICRO).

[62] G. Loh and M. D. Hill. 2011. Efficiently Enabling Conventional Block Sizes for Very

Large Die-Stacked DRAM Caches. In International Symposium on Microarchitecture

(MICRO).

[63] Ali José Mashtizadeh, Min Cai, Gabriel Tarasuk-Levin, Ricardo Koller, Tal Garfinkel,

and Sreekanth Setty. 2014. XvMotion: Unified Virtual Machine Migration over

Long Distance. In Proceedings of the 2014 USENIX Conference on USENIX Annual

Technical Conference (USENIX ATC’14). USENIX Association, Berkeley, CA, USA,

97–108. http://dl.acm.org/citation.cfm?id=2643634.2643645
[64] D. Megas, K. Pizolato, T. Levin, and T. Huffmire. 2012. A 3D Data Transformation

Processor. InWorkshop on Embedded Systems Security.

[65] Mellanox Technologies. 2014. Introduction to InfiniBand. (September 2014). http:
//www.mellanox.com/blog/2014/09/introduction-to-infiniband.

[66] Memcached. [n. d.]. https://memcached.org.
[67] H. Moon, H. Lee, J. Lee, K. Kim, Y. Paek, and B. Kang. 2012. Vigilare: Toward

a Snoop-based Kernel Integrity Monitor. In ACM Conference on Computer and

Communications Security (CCS).

[68] Andreas Moser and Michael I. Cohen. 2013. Hunting in the enterprise: Forensic

triage and incident response. Digital Investigation 10, 2 (2013), 89 – 98. https:
//doi.org/10.1016/j.diin.2013.03.003 Triage in Digital Forensics.

[69] S. Mysore, B. Agrawal, N. Srivastava, S-C. Lin, K. Banerjee, and T. Sherwood. 2016.

Introspective 3D Chips. In International Conference on Architectural Support for

Programming Languages and Operating Systems (ASPLOS).

[70] M. Oskin and G. Loh. 2015. A Software-managed Approach to Die-Stacked DRAM.

In International Conference on Parallel Architectures and Compilation Techniques

(PACT).

[71] Eunbyung Park, Bernhard Egger, and Jaejin Lee. 2011. Fast and Space-efficient

Virtual Machine Checkpointing. In Proceedings of the 7th ACM SIGPLAN/SIGOPS

International Conference on Virtual Execution Environments (VEE ’11). ACM, New

York, NY, USA, 75–86. https://doi.org/10.1145/1952682.1952694
[72] N. Petroni, T. Fraser, A. Walters, and W. A. Arbaugh. 2006. An architecture for

specification-based detection of semantic integrity violations in kernel dynamic

data. In USENIX Security Symposium.

[73] N. Petroni and M. Hicks. 2007. Automated Detection of Persistent Kernel Control-

flow Attacks. In ACM Conference on Computer and Communications Security (CCS).

[74] N. L. Petroni, T. Fraser, J. Molina, and W. A. Arbaugh. 2004. Copilot: A Coprocessor-

based Kernel Runtime Integrity Monitor. In USENIX Security Symposium.

[75] B. Pham, V. Vaidyanathan, A. Jaleel, and A. Bhattacharjee. 2012. CoLT: Coalesced

Large-Reach TLBs. In International Symposium on Microarchitecture (MICRO).

[76] B. Pham, J. Vesely, G. Loh, and A. Bhattacharjee. 2015. Large Pages and Lightweight

Memory Management in Virtualized Environments: Can You Have it Both Ways?.

In International Symposium on Microarchitecture (MICRO).

[77] M. K. Qureshi and G. H. Loh. 2012. Fundamental latency trade-off in architecting

DRAM caches: Outperforming impractical SRAM-tags with a simple and practical

design. In International Symposium on Microarchitecture (MICRO).

[78] J. Rutkowska. 2007. Beyond the CPU: Defeating Hardware based RAM Acquisition,

part I: AMD case. In Blackhat Conf.

[79] J. Rutkowska and R. Wojtczuk. 2008. Preventing and detecting Xen hypervisor

subversions. In Blackhat Briefings USA.

[80] K. Saur, M. Hicks, and J. S. Foster. 2015. C-Strider: Type-aware Heap Traversal for

C. Software, Practice, and Experience (May 2015).

[81] Bradley Schatz and Michael Cohen. 2017. Advances in volatile memory forensics.

Digital Investigation 20 (2017), 1. https://doi.org/10.1016/j.diin.2017.02.008 Special

Issue on Volatile Memory Analysis.

[82] A. Shafiee, A. Gundu, M. Shevgoor, R. Balasubramonian, and M. Tiwari. 2015.

Avoiding Information Leakage in theMemory Controller with Fixed Service Policies.

In International Symposium on Microarchitecture (MICRO).

[83] Spec. [n. d.]. https://www.spec.org/cpu2006/.
[84] A. Stevenson. [n. d.]. Boot into Recovery Mode for Rooted and

Un-rooted Android devices. ([n. d.]). http://androidflagship.com/
605-enter-recovery-mode-rooted-un-rooted-android.

[85] H. Sun, K. Sun, Y. Wang, J. Jing, and S. Jajodia. 2014. TrustDump: Reliable Memory

Acquisition on Smartphones. In European Symposium on Research in Computer

Security (ESORICS).

[86] J. Sylve, A. Case, L. Marziale, and G. G. Richard. 2012. Acquisition and analysis of

Volatile Memory from Android Smartphones. Digital Investigation 8, 3-4 (2012).

[87] TensorFlow. [n. d.]. https://www.tensorflow.org.
[88] Tezzaron Semiconductors. 2008. 3D-ICs and Integrated Circuit Security. (2008).

http://www.tezzaron.com/media/3D-ICs_and_Integrated_Circuit_Security.pdf.
[89] J. Valamehr, T. Huffmire, C. Irvine, R. Kastner, C. Koc, T. Levin, and T. Sherwood.

2012. A Qualitative Security Analysis of a New Class of 3-D Integrated Crypto

Co-Processors. In Cryptography and Security: From Theory to Applications, LNCS

volume 6805.

[90] J. Valamehr, M. Tiwari, T. Sherwood, R. Kastner, T. Huffmire, C. Irvine, and T. Levin.

2010. Harware Assistance for Trustworthy Systems through 3-D Integration. In

Annual Computer Security Applications Conference (ACSAC).

[91] J. Valamehr, M. Tiwari, T. Sherwood, R. Kastner, T. Huffmire, C. Irvine, and T. Levin.

2013. A 3-D Split Manufacturing Approach to Trustworthy System Development.

IEEE Transactions on Computer-aided Design of Integrated Circuits and Systems 32, 4

(April 2013).

[92] Y. Wang, A. Ferraiuolo, and G. E. Suh. 2014. Timing Channel Protection for a

Shared Memory Controller. In IEEE International Conference on High-performance

Computer Architecture (HPCA).

[93] Zi Yan, Jan Vesely, Guilherme Cox, and Abhishek Bhattacharjee. 2017. Hardware

Translation Coherence for Virtualized Systems. In International Symposium on

Computer Architecture (ISCA).

[94] Ruijin Zhou and Tao Li. 2013. Leveraging Phase Change Memory to Achieve

Efficient Virtual Machine Execution. In Proceedings of the 9th ACM SIGPLAN/SIGOPS

International Conference on Virtual Execution Environments (VEE ’13). ACM, New

York, NY, USA, 179–190. https://doi.org/10.1145/2451512.2451547

URLs in references were last accessed January 10, 2018

http://dl.acm.org/citation.cfm?id=2643634.2643645
http://www.mellanox.com/blog/2014/09/introduction-to-infiniband
http://www.mellanox.com/blog/2014/09/introduction-to-infiniband
https://memcached.org
https://doi.org/10.1016/j.diin.2013.03.003
https://doi.org/10.1016/j.diin.2013.03.003
https://doi.org/10.1145/1952682.1952694
https://doi.org/10.1016/j.diin.2017.02.008
https://www.spec.org/cpu2006/
http://androidflagship.com/605-enter-recovery-mode-rooted-un-rooted-android
http://androidflagship.com/605-enter-recovery-mode-rooted-un-rooted-android
https://www.tensorflow.org
http://www.tezzaron.com/media/3D-ICs_and_Integrated_Circuit_Security.pdf
https://doi.org/10.1145/2451512.2451547

	Abstract
	1 Introduction
	2 Overview and Threat Model
	3 Design of SnipSnap
	3.1 Snapshot Consistency
	3.2 Triggering Snapshot Acquisition
	3.3 DRAM and Memory Controller Design
	3.4 Near-Memory Processing Logic
	3.5 Snapshot Driver and HW/SW Interface
	3.6 Formal Verification

	4 Security Analysis
	5 Experimental Methodology
	5.1 Evaluation Infrastructure
	5.2 Workloads

	6 Evaluation
	6.1 Performance Impact on Target Applications
	6.2 CoW Analysis

	7 Related Work
	8 Conclusion
	References

