
Scalable Distributed Last-Level TLBs Using
Low-Latency Interconnects

Srikant Bharadwaj∗
Georgia Institute of Technology

AMD Research

srikant.bharadwaj@amd.com

Guilherme Cox∗†
Rutgers University

guilherme.cox@rutgers.edu

Tushar Krishna
Georgia Institute of Technology

tushar@ece.gatech.edu

Abhishek Bhattacharjee
Rutgers University

abhib@cs.rutgers.edu

Abstract—Recent studies have shown the potential of last-level
TLBs shared by multiple cores in tackling memory translation
performance challenges posed by “big data” workloads. A key
stumbling block hindering their effectiveness, however, is their
high access time. We present a design methodology to reduce
these high access times so as to realize high-performance and
scalable shared L2 TLBs. As a first step, we study the benefits
of replacing monolithic shared TLBs with a distributed set of
small TLB slices. While this approach does reduce TLB lookup
latency, it increases interconnect delays in accessing remote slices.
Therefore, as a second step, we devise a lightweight single-
cycle interconnect among the TLB slices by tailoring wires and
switches to the unique communication characteristics of memory
translation requests and responses. Our approach, which we dub
NOCSTAR (NOCs for scalable TLB architecture), combines the
high hit rates of shared TLBs with low access times of private
L2 TLBs, enabling significant system performance benefits.

Index Terms—Virtual memory, TLB, network-on-chip, caches.

I. INTRODUCTION

Memory-intensive workloads pose many performance chal-

lenges for modern computer systems. One important chal-

lenge is the question of how to achieve efficient virtual-

to-physical address translation [1, 2]. Efficient Translation

Lookaside Buffers (TLBs) are central to achieving fast address

translation. TLB performance depends on three attributes –

access time, hit rate, and miss penalty. Recent studies improve

TLB hit rates with techniques that use hardware-only or

hardware-software co-design approaches like sub-blocking [3],

coalescing [4–6], clustering [7], part-of-memory optimizations

[8, 9], superpages [10–14], direct segments [15, 16], and range

translations [17, 18]. Others have used prefetching and spec-

ulative techniques to support the illusion of higher effective

TLB capacity [11, 19–26]. Similarly, synergistic TLBs, which

evict translations between per-core TLBs, can improve hit

rates [27]. Other studies have focused on reducing TLB miss

penalties [28–33]. Finally – and most pertinently to this study

– shared last-level TLBs have been proposed to improve the

overall hit rate by avoiding replication of shared translations

that occur in multi-threaded programs or multi-programmed

workloads using shared libraries and OS structures [19, 34] .

∗Joint first authors, both of whom have contributed equally to this work.
†Now at NVIDIA.

Unfortunately, many of these approaches side-step the at-

tribute of TLB access time. Consider, for example, shared

TLB organizations. Processor vendors implement two-level

TLBs private to each core today. However, recent academic

work has shown that replacing them with an equivalently-sized

shared (among cores) L2 TLB eliminates as much as 70-90%

of the page table walks on modern systems [34]. However,

sharing also results in larger structures that are physically

further from cores, resulting in longer access latency. Recall

that address translation latency is on the critical path of every
L1 cache access. Consequently, a TLB with more hits may not

be attractive if each hit actually becomes slower. As memory

demands continue to increase, improving TLB reach without

significantly increasing access time is a key research challenge.

Our goal is to translate the hit rate benefits of shared TLBs

to overall runtime speedup. This requires a conceptual re-

think of how architects build scalable shared TLB hierarchies.

The challenge with a multi-banked monolithic shared L2

TLB structure is that it suffers from high latency. A natural

alternative is a distributed shared L2 TLB, akin to NUCA

LLCs. Each distributed shared TLB slice can be made small to

keep access latency low. Unfortunately, this makes TLB access

non-uniform, depending on the location of the slice where the

translation is cached. Our studies on a 32-core Haswell system

show that a distributed shared L2 TLB consequently degrades
performance by 7%, despite having 70% fewer misses on

average than private L2 TLBs. This is because TLB accesses

are more latency critical than data cache accesses.

We propose NOCSTAR (NOCs for scalable TLB

architectures), a design methodology to architect scalable

low-latency shared last-level TLBs. NOCSTAR relies on the

latency characteristics of on-chip wires and the bandwidth

characteristics of address translation requests to realize

a lightweight specialized interconnect that provides near

single-cycle access to remote shared TLB slices, however

far they may be on-chip. Consequently, NOCSTAR provides

the hit rate benefits of shared TLBs at the access latency of

private TLBs via the following features:

1 High capacity: NOCSTAR offers higher hit rates than private

L2 TLBs by eliminating replication and improving utilization.

2 Low lookup latency: NOCSTAR achieves low lookup la-

tency by replacing a monolithic shared L2 TLB structure with

271

2018 51st Annual IEEE/ACM International Symposium on Microarchitecture

978-1-5386-6240-3/18/$31.00 ©2018 IEEE
DOI 10.1109/MICRO.2018.00030

smaller TLB slices distributed across cores.

3 Low network latency: NOCSTAR employs a light-weight

interconnect to connect cores to the distributed TLB slices.

This interconnect provides near single-cycle latencies from any

source to any remote TLB, reducing network traversal latency.

The confluence of these features enables NOCSTAR to

offer within 95% of the performance of an ideal, zero-

interconnect-latency shared TLB. With an area-equivalent con-

figuration∗, NOCSTAR outperforms private L2 TLBs on 16-64

core Haswell systems by an average of 1.13× and up to 1.25×
across a suite of real-world workloads.

II. BACKGROUND AND MOTIVATION

While NOCSTAR is applicable to both instruction and data

TLBs, we focus on the latter. Our focus is driven in part by

the fact that the data-side TLB pressure is growing with the

prevalence of big-data workloads [4, 14–16, 18, 24, 35–38].

Fig. 1 summarizes the TLB architectures considered in this

study. Fig. 1(a) shows conventional private L2 TLBs, while

Fig. 1(b) shows the shared L2 TLB alternative proposed in

prior work [19, 34, 39]. As we scale the size of the shared

TLB, a practical design would involve banking this monolithic

structure, as shown in Fig. 1(c). We evaluate this design and

ultimately find that distributing the TLB slices across cores

(see Fig. 1(d)) with a fast NOC is a better choice. Throughout

this paper, we use the term TLB access latency to refer to

TLB’s SRAM lookup latency + interconnect latency.

A. Limitations of Private TLBs and Promise of Shared TLBs

Private two-level TLBs are a staple in modern server-class

chips like Intel’s Skylake or AMD’s Ryzen processors. For

example, Intel’s Skylake chip uses 64-entry L1 TLBs backed

by 1536-entry, 12-way set associative L2 TLBs per core.

Unfortunately, private L2 TLBs suffer from the classic pitfalls

of private caching structures – i.e., replication and poor utiliza-

tion [34]. Consider the problem of replication. Multi-threaded

applications running on a multi-core naturally replicate virtual-

to-physical translations across private L2 TLBs as they are

part of the same virtual address space. Perhaps more surpris-

ingly, even multiprogrammed combinations of single-threaded

programs exhibit replication as different processes can share

libraries and OS structures [34]. Private L2 TLBs also suffer

from poor utilization because chip-wide TLB resources are

partitioned statically (usually equally) at design time. But this

means that there are situations where, at runtime, a private L2

TLB on one core may thrash while its counterpart on another

core may experience far less traffic [34].

Recent work has evaluated the potential of shared last-level

TLBs (which we call shared L2 TLBs) [34]. Shared L2 TLBs

eliminate the redundancy of private L2 TLBs and seamlessly

divide TLB resources to cores based on their runtime demands,

overcoming the problem of poor utilization. Shared TLBs

∗We conservatively reduce TLB sizes to account for our interconnect area
to ensure area-equivalence between a baseline design with per-core L2 TLBs
and our approach with a shared last-level TLB.

also offer implicit prefetching benefits; i.e., a thread on one

core can demand (and hence prefetch) translations eventually

required by threads on other cores. The original paper finds

that shared TLBs eliminate as much as 70-90% of the misses

suffered when using private L2 TLBs [34].

B. Shared L2 TLB Hit Rate

Fig. 2 quantifies the benefits of shared L2 TLBs on an Intel

Haswell system described in Section IV. Fig. 2 shows that

shared L2 TLBs eliminate the majority of L2 TLB misses

suffered by private TLBs. Note that for every one of our

workloads, the entire private L2 TLB is used to store entries

– that is, no translations are wasted. Furthermore, like prior

work [4, 34], we found that private L2 TLB miss rates range

from 5-18%. Naturally, the main reason these miss rates are

harmful is the fact that each TLB miss is a long-latency event.

Generally, the higher the core count, the more effectively the

shared L2 TLB eliminates private L2 TLB misses. Consider,

for example, a situation with 4 cores, and one with 16 cores.

If private TLBs are N entries, the 4-core case can replace the

private L2 TLBs with a shared L2 TLB with 4×N entries. A

16-core case can realize a 16×N-entry L2 TLB instead. We

are therefore able to eliminate the replication and utilization

problems of private TLBs even more effectively at higher core

counts. Workloads with notably poor locality of access (e.g.,

canneal, gups, and xsbench) are particularly aided by

shared TLBs at higher core counts.

C. Shared TLB Access Time

One might expect the hit rate improvements of Fig. 2 to

improve performance overall. However, TLB performance is

influenced not just by hit rates, but also the following:

1 SRAM array lookup times: L2 TLBs are typically imple-

mented as SRAM arrays. Unfortunately, scaling SRAM arrays

while ensuring fast access is challenging. We model SRAMs in

TSMC 28nm technology node using memory compilers. Fig. 3

quantifies access latency scaling as a function of the number of

entries in the array (all numbers are post-synthesis). A 1536-

entry L2 TLB (the size of private L2 TLBs in Intel Skylake)

takes 9 cycles, while a 32×1536-entry design takes close to 15

cycles to access. Replacing private TLBs with an equivalently-

sized shared TLB means that the shared structure grows from

a 12K-entry structure for 8 cores (8×1536 entries) to a 96K-

entry structure for 64 cores (64×1536 entries), increasing

lookup times by factors of 2-4× Ultimately, this high access

latency – which worsens as we need larger shared TLBs for

higher core counts – counteracts the benefits of higher hit rates.

2 Interconnect traversal times: The original paper on shared

TLBs focused on monolithic designs where the entire structure

was placed at one end of the chip [34]. Naturally, this design

exacerbated access times further, due to additional interconnect

delays to access the shared TLB location. This was observed

to counteract the benefits in some cases even for a 4-core

system [34]. Higher core counts further worsen this delay. For

272

Shared Last Level
TLB

 Shared Last Level

Bank
1

Bank
0

Bank
2

L1 L1 L1

L1 L1 L1

L1 L1 L1 L1
SLL

Slice 0

L1
SLL

Slice 1

L1
SLL

Slice 2

L1
SLL

Slice 3

L1
SLL

Slice 4

L1
SLL

Slice 5

L1
SLL

Slice 8

L1
SLL

Slice 7

L1
SLL

Slice 6

(a) (b) (c) (d)

L1

L2
L1

L2
L1

L2

L1

L2
L1

L2
L1

L2

L1

L2
L1

L2
L1

L2

L1 L1 L1

L1 L1 L1

L1 L1 L1

Fig. 1: Last Level TLB Organization (a) Private, (b) Shared Last Level TLB - Monolithic, (c) Shared Last Level TLB - Banked,
and (d) Shared Last Level TLB - Distributed across the cores

Fig. 2: Percentage of private L2 TLB misses eliminated by replacing
with a shared TLB. Results shown for 16-64-core systems.

6
8

10
12
14
16
18

0.5x 1x 2x 4x 8x 16x 32x 64x

Cy
cl

es

Size of SLL compared to Private TLB

Fig. 3: Access latency of SRAM TLB compared to number of entries
in a TLB. Post-synthesis in 28nm TSMC PDK.

instance, for a 64-core system, the tiles at the top of the chip

would require 8 hops in each direction to access the TLB.

3 Bandwidth: A problem with the original shared TLB

proposal is that accesses from multiple cores suffer from

contention at the shared structure’s access ports. While we

will show that the likelihood of many concurrent TLB accesses

is relatively low, it can still decrease performance versus the

private L2 TLB scenario, where each core can access its

private TLB without interference from other cores.

D. Shared TLB Performance

Fig. 4 quantifies how attributes 1 - 3 counteract higher

hit rates in determining the overall performance of shared

monolithic L2 TLBs. We profile performance on a 32-core

Haswell system using monolithic shared L2 TLBs versus

private L2 TLBs. Based on our SRAM array memory compiler

studies with 28nm TSMC, we determine that the private L2

TLBs have 9-cycle lookup times. These are consistent with

other references that measure Haswell TLB lookup times and

Intel’s product manuals, which state that private L2 TLB

lookup latencies are 7-10 cycles [40]. For the shared L2 TLB,

Fig. 4: Speedups using shared multi-banked TLBs over private L2
TLBs. Shared TLB access latencies varies from 25 to 9 cycles.

we vary the total access latency from 9 cycles (an unrealizable

ideal case where the 32× larger SRAM array has access

times that match the private L2 TLBs and the interconnect

is zero-latency) to 25 cycles (a more reasonable estimate of

the larger SRAM array plus interconnect latency). We bank the

shared L2 TLB; we study designs with 16, 32, 64, and 128

banks. We plot results from the highest-performing banking

configuration for each workload. Section IV describes the rest

of the system configuration. Our experiments assume Linux

4.14 with support for transparent superpages [4, 5]. We find

that over half of the memory footprint of the workloads are

implemented as superpages (see Section V for more details).

Fig. 4 shows that despite better hit rates, the monolithic

shared TLB can perform poorly. For example, at 25-cycle

access latency, we see a 10-15% performance dip versus

private L2 TLBs. Even worse, consider an unrealizable ideal

network with zero interconnect latency (i.e., the only latency

arises from port contention and SRAM array latency), which

corresponds to the scenario where the shared L2 TLB access

takes 16 cycles. Even here, the shared TLB shows little to no

speedup over private L2 TLBs.

E. Understanding Shared L2 TLB Access Patterns

We now study key aspects of shared TLB access patterns

that can help us overcome access latency problems.

Shared L2 TLB contention across applications. Fig. 5

captures information about contention at the shared L2 TLB.

For every shared L2 TLB access, we plot the number of other

cores with outstanding shared L2 TLB accesses. Fig. 5 shows

that more than 40% of the L2 TLB accesses occur in isolation;

i.e., there is no other outstanding TLB access. Roughly another

273

Fig. 5: Fraction of L2 TLB accesses that occur concurrently with 1
other access, 2-4 other accesses, etc., on a 32-core Haswell system.

Fig. 6: (Left) Fraction of L2 TLB accesses that occur concurrently
with 1 other access, 2-4 other accesses, etc. Each bar averages results
across workloads; (right) fraction of L2 TLB accesses to a TLB slice
that occurs concurrently with 1 other access to that slice, 2-4 other
accesses to that slice, etc. Each bar shows a distributed shared L2
TLB, where the number of TLB slices is equal to the number of cores.

20-30% of the L2 TLB accesses occur when there are only

2-4 outstanding shared L2 TLB lookups.

Shared L2 TLB contention with varying L1 TLB size. The

larger the L1 TLB, the fewer the shared L2 TLB accesses.

Fig. 6 (left) shows the impact of the L1 TLB size on shared

L2 TLB contention. The baseline bar matches the average

access distribution from Fig. 5, while the 0.5×L1 and 1.5×
bars represent distributions as the private L1 TLBs per core are

halved or increased by 50%. As one might expect, smaller L1

TLBs lead to more shared L2 TLB lookups. Consequently,

the 2-4 access and 5-8 access portions of the bars

increase significantly, implying greater contention. More inter-

esting however are the trends towards bigger L1 TLBs as this

reflects the direction processor vendors are going in. When

we increase the L1 TLB sizes by 50%, we see contention

dropping, with the 1 access case dominating and taking

up roughly 50% of the shared L2 TLB accesses.

Shared L2 TLB contention with varying core counts.
Finally, Fig. 6 also shows the impact of core count on shared

TLB contention. The baseline represents 32-core Haswell;

0.5×L1 and 1.5× are for 32-core Haswell with half and 1.5

times the baseline L1 TLB size. The 64-512 core results

assume 64- to 512-core Haswell systems and we expect shared

L2 TLB contention to increase with a higher number of core

counts. However, not only does contention not increase at 64

cores, it only marginally increases at 128 cores (i.e., the 5-8
accesses and 9-12 accesses contributions increase by

roughly 10% and 5% respectively). Only when we begin

to approach 256 cores and beyond does contention visibly

increase. However, we have also performed experiments where

we have replaced the monolithic (banked) shared L2 TLB with

a distributed shared L2 TLB, where the number of L2 TLB

slices equals the core count. The graph on the right in Fig. 6

showcases our results, this time quantifying the contention on

average per TLB slice. As shown, even with high core counts

(256-512 cores), roughly 60% of accesses to a single L2 TLB

slice suffer no contention with concurrent accesses.

Takeaways. L2 TLBs must be accessed quickly for perfor-

mance but concurrent accesses are rare. This is true not just

for system configurations today, but would continue to remain

true and in fact drop further in future systems with larger

L1s or more cores. Later in Section V, we also validate this

observation for a TLB miss ”storm” microbenchmark (where

we deliberately create high L1 TLB miss situations). This

conceptual underpinning motivates our work - we design a

specialized interconnect optimized for low latency rather than

high bandwidth to accelerate shared L2 TLB access.

F. Low-Latency Interconnects

On-chip wire delay. As technology scales, transistors become

faster but wires do not [41], making wires slower every

generation relative to logic. This fact prompted research into

NUCA caches [42, 43]. However, since clock scaling has

also plateaued, wire delay in cycles remains fairly constant

across generations. Long on-chip wires have repeaters at

regular intervals, and take 75-100 ps/mm [41, 44, 45]. Thus

it is possible to perform a 1-cycle traversal across the
chip in modern technology nodes, as recent chips have

demonstrated [44, 45].

NOC traversal delay. The network latency (T) of a message

in modern NOCs is denoted as [46]:

T = H × (tr + tw) +

H∑

h=1

tc(h) + Ts

H is the number of hops required to reach the destination,

tr is the router delay, tw is the wire delay, tc(h) captures

the contention at each router, and Ts is the serialization delay

incurred when sending a wide packet over narrow links. The

latency is directly proportional to H .

Challenges with designing low-latency NOCs. It is usually

difficult to build NOCs optimized for latency, bandwidth,

area and power (see Table I). Buses do not scale and each

traversal is a broadcast. Meshes are the most popular due

to their simplicity and scalability, as they rely on a grid

of short links with simple routers (with low tr) at cross-

points. However, the average hop count H (and therefore

latency) is increased. High-radix NOC topologies (such as

FBFly [47]) add long-distance links between distant routers,

reducing H . However, these naturally add more links (i.e.,

bandwidth), leading to high area and power penalties from

multi-ported routers and crossbars. If we use a narrower

datapath (i.e., reduced bandwidth), we can reduce area and

274

TABLE I: TLB Interconnect Design Choices.
NOC Latency Bandwidth Area Power
Bus � � � �

Mesh � � � �
FBFly-wide [47] � �� �� ��

FBFly-narrow � � � �
SMART [48] � � � �

NOCSTAR � � � �

power to that of a mesh, but serialization delay Ts leads to

higher latencies. Optimizations such as SMART [48] fall in

between these extremes by enabling packets to dynamically

construct bypass paths over a mesh, reducing the effective H .

However, the paths are not guaranteed, and require expensive

control circuitry to setup and arbitrate for, leading to false

positives and negatives [48]. Moreover, buffers at routers in a

Mesh, FBfly and SMART add high area and power overheads.

NOCSTAR proposes an interconnect with tr = 0, H = 1, and

tw = 1, as we describe in the next section.

III. NOCSTAR DESIGN

Our approach, NOCSTAR, organizes the SLL TLB as a

distributed array of TLB slices to reduce lookup latency,

connected by a configurable single-cycle network fabric to

reduce interconnect latency.

A. TLB Organization: Distributed TLB slices

NOCSTAR is a logically shared last level TLB distributed

across the tiles of a many-core system, mirroring the design

of NUCA LLCs [42]. Each slice is the equal or smaller than

the size of current private L2 TLBs, thereby meeting the same

area and power budgets.

• TLB Entries: Each entry in a slice includes a valid bit, the

translation and a context ID associated with the translation.

• Indexing: Although optimized indexing mechanisms can

be adopted for better performance, we use a simple index-

ing mechanism using bits from virtual address.

B. TLB Interconnect

We develop a dedicated side band NOC for communicating

between the L1 TLBs and L2 TLB slices. Section II-F and

Table I showed that directly adopting NOCs used between

data caches today is not desirable for a TLB interconnect.

Instead, we develop a latchless, circuit-switched interconnect

that can provide single-cycle connectivity between arbitrary

source-destination pairs.

1) Datapath: Latchless Switches: The datapath in NOC-

STAR leverages the fact that wires are able to transmit signals

over 10+ mm within a GHz (Section II-F). To enable single

cycle traversal of packets in NOCSTAR, we add a latchless
switch next to each L2 TLB slice as shown in Fig. 7(a). The

switch is simply a collection of muxes (see Fig. 7(c)). The

muxes are pre-set before a message arrives, as we will describe

in Section III-B2. Fig. 7(b) shows a request arriving from the

West direction traversing the switch and directly getting routed

out of the South direction, as selected by the multiplexers,

without getting latched. A message gets latched only at the

destination switch where it needs to be ejected out to the target

L1 TLB or L2 TLB slice. For example, an L1 TLB at the top

left corner can send a request within one cycle to the L2 TLB

slice at the bottom right, as Fig. 7(b) highlights. Each mux

acts a like a repeater, and the entire traversal is similar to that

of a conventional repeated wire [44, 45].

Bandwidth: This datapath is naturally lower bandwidth than a

Mesh or FBFly as it does not have any buffers internally within

the NOC. Moreover, unlike a FBfly which has more links,

it cannot support multiple simultaneous transmissions unless

they are using completely separate set of links. However, as

we demonstrated earlier in Section II-E, L1 TLB misses are

infrequent – there is only one access 60% of the time, and 1-4

accesses 80% of the time, making this low-bandwidth NOC

sufficient for our purpose.

Scalability: Each traversal over this network takes a single-

cycle. For large chips running at very high frequencies, this

might be multiple cycles by adding pipeline latches as we

discuss in Section III-B3.

2) Control Path: Fine-Grained Circuit-Switching: We now

describe the steps involved in sending the messages.

Path setup. For each traversal through the interconnect, all

data links in the path have to be acquired before sending

any kind of message. To ensure that the packet reaches the

destination in a single cycle, all links in the path must be

acquired in the same cycle. This is done using separate control

wires. Each data link has an associated arbiter which can

allocate the link to one of the requesting cores. Fig. 8 shows

an example of a core sending requests to all link arbiters in

its path and receiving grants from each link arbiter before

traversing the path. If any requester fails to acquire all the
links in the desired path, because of any contention, it will

wait and try again in the next cycle. This ensures that there are

no packets traversing partial paths and thus avoids complexity.

Once a path is acquired, the message can traverse through the

datapath as shown in Fig. 7(b).

Fanout from switch. Each core has must have a way to setup

a path to any of the slice present in the system. The width

of the control wires for each arbiter depends on the routing

policy adopted by the TLB system at design time. Consider

an XY based policy in a system as shown in Fig. 7(d).

Each core is connected to the arbiter associated with a link

through which the core can send a request. Thus, the number

of wires going out of each core is (num cores each row−
1) + ((num rows− 1)× (num columns)).

Link arbiters. Each network link has an associated arbiter

residing near the switch. The arbiter gets requests from any

core which can send a TLB request/response packet through

the link. This arbiter then selects one of the requesting cores

and grants the link to it for the next cycle by setting the output

mux to receive from the appropriate input port, and sending a

1-bit grant back to the requester, as shown in Fig. 8.

275

TL
B

Sl
ic

e

(b) (c) (d)

Fr
om

 L
in

k
Ar

bi
te

r

Lo
ca

l
Bu

ffe
r

S

En

W
To TLB
Slice

E
N
S

Li
nk

Ar

bi
te

r

W

N

N
L2

SwitchL1
TLB

L2 TLB
Slice

Core

Ar
bi

te
r

(a)

Single Cycle
Traversal

Arbiter BArbiter A

Source

Destination

Fig. 7: (a) TLB hierarchy near each core in NOCSTAR. (b) Source and destination of a request and the path of taken by the request. (c)
Micro-architecture of the switch which enables single cycle traversal through the network. (d) Cores that can send requests to a given arbiter.

Link
Arbiter

D
es

tin
at

io
n

req
gnt

Vi
rt

ua
l A

dd
re

ss

Enable
Traversal

Link Selector

TL
B

Sl
ic

e
ID

Source
Link

Arbiter

Fig. 8: For setting up the path a core sends requests to all link
arbiters in the path and waits for grants from them.

SRAM TLB
Switch

Link
Arbiter

Per Core Power
(ܹ݉)

Area
(݉݉2)

Switch 0.43 0.0022
4x Arbiters 2.39 0.0038
SRAM TLB 10.91 0.4646

47 μm

31 μm

681 μm

Fig. 9: Place-and-routed NOCSTAR tile in 28nm TSMC with the L2
TLB SRAM, switch and link arbiters highlighted and power/area of
a switch and link arbiters for each slice in comparison to a SRAM
based TLB slice. Target Clock Period = 0.5ns.

Fanin at link arbiters. Depending on its physical location

on-chip and the routing policy, different arbiters will have

different number of requests coming in. For example, suppose

we only allow XY routing. Fig. 7(d) shows that the green

Arbiter A for an X link can only have one requester, while

the red Arbiter B for a Y link has six possible requesters.

Arbitration priority. As the arbitration for each link is

decentralized, there could be a possibility of livelock if two or

more requests only acquire a partial set of links during each

arbitration. To avoid this, the arbiters follow a static priority

order among the requesters, to allot the links. In other words,

a requester with higher priority will be guaranteed to get all its

requested links. Further to avoid starvation, the static priority

changes in a round-robin fashion every 1000 cycles.

3) Implementation: We implemented the NOCSTAR inter-

connect in TSMC 28nm with a 2GHz clock. Fig. 9 shows the

place-and-routed design. We observe the following.

Core

Remote
L2 TLB
Slice

L1
TLB

Insert

Time

Path
Setup

L1
TLB
Miss

L2 TLB Slice
Access

Path
Setup

0 1 2 3 12 13

Fig. 10: Timeline of a virtual address translation in case of an L1
TLB miss and remote L2 TLB access in NOCSTAR.

Critical path. There are two sets of critical paths in the

interconnect. On the datapath, a multi-hop traversal through

all the intermediate switches needs to be performed within

one clock cycle. Recall that the TLB interconnect is created

at design-time. If timing is not met at the desired clock

frequency, pipelined latches can be added at the maximum

hops per cycle (HPCmax) [48] boundaries. This will increase

the network traversal delay, but does not affect the operation of

the design. Moreover, as core counts increase and tiles become

smaller, the maximum hops per cycle will actually go up. On

the control path, the critical path consists of the path setup

request to the furthest link arbiter, link arbitration, and the

grant traversal back to the core (Fig. 8). We observed that the

place-and-route tool placed all the arbiters close to the center

of the design to reduce the average wire lengths to meet timing.

Area and power. Fig. 9 shows the post-synthesis power

and area consumed by the NOCSTAR switch and arbiter. We

contrast it with the cost of the L2 TLB SRAM present in the

same tile. The area consumed by switch and arbiter is less

than 1% of the tile’s L2 TLB SRAM. The link arbiters, due

to high fanin and tight timing, are the most power hungry

component and key overhead. We can reduce this overhead

by restricting the routing algorithm (and correspondingly the

fanin), as discussed earlier in Section III-B2.

C. Timeline of L2 TLB Access in NOCSTAR

Fig. 10 presents a timeline of address translation when there

is an L1 TLB miss.

276

L1 TLB miss. The L1 TLB miss triggers a circuit-switched

path setup. The path setup can be performed speculatively

during the L1 TLB access as well.

Request path setup. The remote TLB slice to which the

translation is mapped is identified by the indexing. A path

setup request is then sent to the arbiters of the links in the

path. The grants from all the requests are ANDed to determine

if the full path was granted or not. If not, the path setup is

retried. If the full path is granted, the request is sent out.

Request traversal. The TLB request is forwarded to the

switch connected to the TLB slice (Fig. 7(a)). No header or

routing information needs to be appended, since the path is

already setup. The request takes a single-cycle through all the

intermediate switches, and is latched at the remote TLB slice

and enqueued into its request queue.

L2 TLB slice access. The remote TLB slice receives the

request and services the request. The translation may either

exist or not. If it is a TLB hit, a response should be sent. The

response contains the physical page associated with the virtual

address in the request. A TLB miss would lead to a page walk

which is discussed in Section III-F.

Response path setup. A circuit-switched path for the response

is requested. The response path can be setup speculatively,

during the L2 TLB lookup, as a response will be sent to the

requester regardless of access result.

Response traversal. The response traverses the TLB intercon-

nect within a single-cycle.

L1 TLB insertion The requested translation is inserted into

the requesting L1 TLB if it was a hit.

D. L2 TLB Access Latency and Energy

We quantify NOCSTAR’s latency and energy benefits versus

monolithic and distributed shared TLBs. Fig. 11(a) shows the

latency of a message when traversing different number of hops

through the TLB interconnect in the different shared last-level

TLB designs. We consider two cases:

Case 1: The requested translation is indexed in the slice of the
requesting core: The virtual address is used to index into the

SLL slice in the local node and the translation is returned to L1

TLB. The total latency incurred is equal to lookup latency
of the TLB slice for both Distributed and NOCSTAR designs.

This is identical to private last-level TLB latency.

Case 2: The requested translation indexes to a remote slice:

The required translation request is sent to the remote node

containing the slice through a dedicated network. Once it

reaches the destination node, the virtual address is used to

index into the SLL slice and the translation is then sent back to

the requesting slice. Upon receiving the translation response,

the requesting core can then forward the translation to the

L1 TLB. The total latency in this case is lookup latency +
network latency. Here, NOCSTAR provides a latency advan-

tage over both Monolithic and Distributed. Even when the

maximum hops per cycle HPCmax in NOCSTAR goes down,

it is still much faster than the distributed case.

Fig. 11(b) shows the energy consumed by a message

when traversing different number of hops through the TLB

interconnect to understand trade-off spaces among the shared

TLB designs. Most of the energy savings for the distributed

design and NOCSTAR come from accessing a smaller SRAM

structure than a monolithic(M) SLL TLB. Further, on the

datapath, because of circuit switching, the energy consumed

by an intermediate switch in NOCSTAR (N) is less compared

to a switch in a traditional distributed network (D) with multi-

cycle hops. However, NOCSTAR has a more expensive control

path because of multiple request and grant wires spanning to

all the link arbiters for simultaneous arbitration (Fig. 8). For

instance, to traverse 14 hops within a cycle, NOCSTAR will

require 14 links to be arbitrated for simultaneously. This shows

up as a slightly higher control cost than Distributed. However,

the latency gains from this approach leads to an overall energy

savings, as we discuss in Section V.

E. Insertion/Replacement Policy

Like recent studies on TLB architecture, we assume that

L1 and L2 TLBs use the lower-order bits of the virtual page

number to choose the desired set using modulo-indexing, and

use LRU replacement [4, 5, 7, 10, 11, 21, 24, 28]. Furthermore,

like all recent work on two-level TLBs [4, 5, 7, 11, 34], we

assume that the L1 and L2 TLBs are mostly-inclusive. Like

multi-level caches, mostly-inclusive multi-level TLBs do not

require back-invalidation messages [49].

F. Handling Page Table Walks

Suppose that a core suffers an L1 TLB miss and must

look up the shared last-level L2 TLB. Suppose further that it

determines that the TLB slice housing the desired translation

lies on a remote node. If lookup of the remote node’s TLB

slice ultimately results in a miss, there are two options for

performing the resulting page table walk. In the first option,

the remote slice can send a miss message back to the requester

node, which must now perform the page table walk. In the

second option, the remote node can itself perform the page

table walk. Both approaches have pros and cons. Handling

page table walks at the remote node is attractive in that it

eliminates the need for a miss message to be relayed between

the remote and requester nodes. However, handling page table

walks on the remote node also increases the potential for page

table walker congestion; i.e., if multiple core’s send requests

to a particular remote slice and all of them miss, page table

walks can be queued up.

G. TLB Shootdowns

A key design issue involves how NOCSTAR responds to

virtual memory operations performed by the OS. In particular,

consider a situation where a page table entry is modified by

the OS on a particular core. When this happens, the OS kernel

usually launches inter-processor interrupts (IPIs) that pause

other cores and run an interrupt handler that ”shoots down”

277

5

10

15

20

25

30

35

40

0 1 2 4 6 8 10 12

Cy
cl

es

Hops

Access Latency Network Latency
(a) Monolithic - Multi-Cycle Interconnect
(b) Distributed - Multi-Cycle Interconnect
(c) NOCSTAR - HPCmax=4
(d) NOCSTAR - HPCmax=8
(e) NOCSTAR - HPCmax=16

a

b

c d e

(a) (b) (c)

0
10
20
30
40
50
60
70
80
90

0

5

10

15

20

0.01 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

%
 M

es
sa

ge
s

in
 N

O
CS

TA
R

w
ith

 N
o

Co
nt

en
tio

n

La
te

nc
y(

Cy
cl

es
)

Injection Rate

No contention delay Multi-hop Mesh NOCSTAR Latency

0

20

40

60

80

100

120

M D N M D N M D N M D N M D N M D N M D N M D N

0 1 2 4 6 8 10 12

En
er

gy
(p

J)

Hops

Link Switch Control SRAM

Fig. 11: (a) Latency of each message in the TLB Interconnect in various configurations. (b) Energy consumed by each message in the TLB
Interconnect in various configurations. (M)onolithic, (D)istributed, and (N)OCSTAR vs number of hops (c) Average latency of messages with
respect to increasing injection rate in NOCSTAR interconnect compared to a multi-hop interconnect.

or invalidates the stale translation in the TLB [35–37, 50]. This

operation requires care in NOCSTAR – specifically, it is now

possible that multiple cores simultaneously relay a translation

invalidation signals to a single TLB slice that houses the stale

translation. This can quickly congest the system by cascading

TLB invalidation lookups of a single TLB slice.

We sidestep this by designating some node(s) as the inval-
idation leader(s). In other words, even though any core can

receive IPIs, and each core invalidates its private L1 TLB,

only specific cores are permitted to then relay invalidation

signals to the shared TLB. For example, if core 0 is con-

sidered the invalidation leader, any core that receives an IPI

has to relay a message to core 0. Core 0 in turn relays a

message to the relevant shared TLB slice to invalidate the stale

translation. The actual TLB invalidation process for NOCSTAR

from here on out mirrors that of a private L2 TLB. That is,

during a private L2 TLB invalidation event, accesses to other

translations in the private L2 TLB can be made; similarly,

during the invalidation of a shared L2 translation, accesses to

other translations (within the same slice or to other slices) are

permitted. In Section V, we study our approach. The ideal

scenario is a middle ground where the number of leaders is

far fewer than the core count, but where it is not so small that

the messages become congested at any particular leader core.

IV. METHODOLOGY

Simulation framework. We evaluate the benefits of NOCSTAR

using an in-house cycle-accurate simulator based on Simics

[51]. We model Intel Haswell systems [52] running Ubuntu

Linux 4.14 with transparent superpages (which is the standard

configuration). We model Intel Haswell cores with 32KB 8-

way L1 instruction/data caches with 4 cycle access times,

256KB 8-way L2 caches with 12 cycle access times, and

an LLC with 8MB per core and 50 cycle access times.

These parameters are chosen based on Haswell specification

parameters from the Intel manual [40, 52]. System memory is

2TB, with the workload inputs scaled so that each workload

actually makes use of the full memory capacity.

Our cores maintain private L1 TLBs for different page sizes;

i.e., 64-entry 4-way associative L1 TLBs for 4KB pages, 32-

entry 4-way L1 TLBs for 2MB pages, and 4-entry TLBs

for 1GB pages. As per Haswell specifications [40], our L1

TLBs are single-cycle and are accessed in parallel with the L1

caches using the standard virtually-indexed physically-tagged

configuration [10]. All L1 TLBs have two read ports and a

write port. Misses in the L1 TLB are followed by an L2 TLB

lookup. Our baseline assumes the Intel Haswell configuration

of private 1024-entry, 8-way associative L2 TLBs that can

concurrently support 4KB and 2MB pages. In our studies, this

baseline is 9 cycles based on post-synthesis SRAM numbers

we generate, which also matches data from Intel manuals [40].

We vary this L2 TLB organization and latency; furthermore,

we assume 2/1 read/write ports for each private L2 TLB and

per shared L2 TLB slice. Our simulator models the L2 TLBs

accesses as being pipelined, so one request can be serviced

every cycle [10, 53, 54]. Finally, we combine our simulation

framework with McPAT for energy studies [55].

Target configurations. Table II details the shared L2 TLB

configurations that we evaluate. The first approach we evaluate

is the standard monolithic approach posed in the original

shared L2 TLB study [34]. We have evaluated several banking

configurations for monolithic and settle on 4 banks for

16- and 32-core configurations, and 8 banks for 64 cores.

We evaluate this with a regular mesh, and a single-cycle

SMART NOC [48]. The second approach we study is a

distributed approach where the shared L2 TLB is made

up of an array of TLB slices placed near each core and

connected by a NOC. We consider two different types of

NOCs for shared distributed L2 TLBs: (a) Mesh (Multi-hop):
This involves a traditional 1-cycle router coupled with 1-

cycle link latency. To compete against a single-cycle-traversal-

based NOCSTAR, we place enough buffers and links in the

system to prevent link contention. Including any network

contention may further degrade performance of workloads

for traditional mesh networks. (b) NOCSTAR: A single cycle

traversal if there is no contention; otherwise waits for another

cycle as explained in Section III-B2; routing is XY-based.

Our NOCSTAR evaluations assume that each core maintains

a 920-entry (rather than a 1024-entry) shared TLB slice. This

is a conservative area-normalized analysis, even though our

interconnect consumes less than 1% area of each TLB slice.

Benchmarks. We use benchmarks from Parsec [56] and

CloudSuite [57] for our studies. Furthermore, we study the

performance of multi-programmed workloads by creating

combinations of 4 applications. Each application in a multi-

278

TABLE II: Major configurations of TLB that were simulated.
L2 TLB Entries

(8-way associative)
Physical

Org Interconnect

Private 1024
1 TLB

Per Core
-

Monolithic
(Shared) 1024×NumCores Monolithic

Mesh (Multi-Hop),
SMART

Distributed
(Shared) 1024×NumCores

1 slice
Per Core

Mesh (Multi-Hop)

NOCSTAR 920×NumCores
1 slice

Per Core
NOCSTAR

Fig. 12: Speedups for monolithic, distributed, and NOCSTAR com-
pared to ideal case with zero interconnect latency to the shared L2
TLB. Results assume 16-core Haswell systems using only 4KB pages.

Fig. 13: Complementary results to Fig. 12 but when Linux uses
transparent superpages for a mix of 4KB and 2MB pages.

programmed workload has 8 threads executing and scaled up

to use 2TB of memory.

V. EXPERIMENTAL EVALUATIONS

Performance. Fig. 12 shows performance results for a 16-core

Haswell configuration, assuming only 4KB pages. We plot

speedups versus a baseline with private L2 TLBs; i.e., higher

numbers are better (note that the y-axis begins at 0.8). Our

monolithic data corresponds to a monolithic banked shared

L2 TLB with access latencies determined from our circuit-

level studies (see Section IV). We also show a distributed
configuration as well an ideal case, where all shared TLB

accesses have zero interconnect latency. Note that the ideal
case does not imply an infinite TLB.

Fig. 12 shows that NOCSTAR achieves an average of 1.13×
and a max of 1.25× the performance of private L2 TLBs.

Importantly, this is better than any other configuration. In

fact, monolithic degrades performance versus private L2

TLBs because of the perniciously high access latency. While

Fig. 14: (Left) Speedups for varying core counts for Linux with
transparent 2MB superpage support; and (right) percent of address
translation energy saved versus private L2 TLBs.

distributed partly helps, NOCSTAR achieves over 8%

additional performance and comes within 2% of ideal.

Fig. 13 shows performance with Linux’s native support for

transparent 2MB superpages. We found that Linux was able

to allocate 50-80% of each workload’s memory footprint with

superpages. One might expect superpages to reduce L1 TLB

misses, reducing the gains from NOCSTAR. We find, however,

even better performance with NOCSTAR in the presence of

superpages. This is because the workloads are so memory-

intensive (i.e., 2TB) that even with superpages, L1 TLB

misses/shared L2 accesses are frequent. However, superpages

do a good job of reducing shared L2 TLB misses, meaning that

L2 TLB access times become a bigger contributor to overall

performance. This explains why workloads such as xsbench
and gups achieve large speedups of 1.2×+. NOCSTAR also

outperforms monolithic and distributed with even

larger margins than when simply using 4KB pages.

Scalability. The graph on the left in Fig. 14 quantifies

speedups for varying core counts, when Linux supports trans-

parent 2MB superpages along with 4KB pages. We show

average, minimum, and maximum speedup numbers. In the

monolithic case, high hit rates are overshadowed by high

access times, particularly worsening performance at higher

core counts. Employing a distributed approach helps, but

NOCSTAR consistently outperforms other approaches.

Energy. Recent work shows that address translation can con-

stitute as much as 10-15% of overall processor power and

that the energy spent accessing hardware caches for page

table walks is orders of magnitude more expensive than the

energy spent on TLB accesses [58]. Using a shared TLB saves

address translation energy by eliminating a large fraction of

page table walks. Fig. 14 shows this, by plotting the percent of

energy saved versus a baseline with private L2 TLBs. Even the

monolithic approach eliminates roughly a third of address

translation energy. However, NOCSTAR eliminates even more

energy (as much as 60% on 64 cores). We have identified

several reasons for these energy savings. One source is that

NOCSTAR dramatically reduces runtime, thereby reducing

static energy contributions of our system. Another important

source of energy savings is that NOCSTAR reduces TLB misses

and the ensuing page table walks. This means that cache

lookups and memory references for the page table lookup are

eliminated. In practice, like prior work [25, 29], we have found

279

Fig. 15: Speedup over baseline configuration with private L2 TLBs.
We show two monolithic approaches (with traditional multi-hop
mesh and SMART, as well as an ideal NOCSTAR, where we have
no contention on the interconnect. We compare this to an ideal
case where the TLB slices have zero interconnect latency.

that most page table walk memory references are serviced

from the LLC. In our experiments on a baseline without

NOCSTAR 70-87% of the page table walks in the workloads

we evaluate prompt LLC and main memory lookups for the

desired page table entry. Using NOCSTAR eliminates the bulk –

over 85% on average – of the LLC/memory references, thereby

saving lookup energy. These energy savings far outweigh the

the energy overheads of the dedicated NOCSTAR network.

Interconnect. We now tease apart the performance contribu-

tions of distributing TLB slices versus a faster interconnect

with Fig. 15. All bars represent speedups versus private L2

TLBs in a 32-core Haswell configuration. We show two

versions of the banked monolithic approach, one with tradi-

tional multi-hop mesh, and one where we implement SMART

with the monolithic approach. On average, both approaches

suffer performance degradation; that is, even with a better

interconnect (i.e., SMART), the monolithic approach experi-

ences SRAM array latencies that are harmfully high. Instead,

when we distribute the L2 TLB into slices per core (i.e.,

distributed), we achieve an average of 5% performance

improvements. However, NOCSTAR performs even better.

Ideally, messages in NOCSTAR should take only 1 cycle to

traverse the NOC. However, this number may increase because

of contention for the path taken by the message. We find that

on average, latencies are 1-3 cycles, with only two workloads

– xsbench and gups – suffering latencies that can go

beyond 3 cycles. Overall, this means that NOCSTAR achieves

performance close to an idealized case, where the interconnect

faces zero contention (represented by NOCSTAR (ideal) in

Fig. 15. Finally, Fig. 15 also shows the achievable performance

with an ideal scenario where the interconnect has zero

latency. We see that NOCSTAR achieves within 95% of the

performance of this idealized case.

To test the interconnect mechanism adopted in NOCSTAR,

we injected random synthetic traffic to a 64 core system.

Fig. 11(c) shows the average network latency faced by mes-

sages. Ideally messages in NOCSTAR would experience 1 cycle

in path setup and another cycle to traverse the network. We

see that even with an injection rate of 0.1 (1 message every

Fig. 16: (Left) Speedups with varying core counts versus private
L2 TLBs for round-trip acquire (1×two-way) and one-way acquire
(2×one-way); and (right) speedups of TLB invalidation policies.

10 cycles per core, which is high for TLB traffic), the average

latency of messages in the NOCSTAR interconnect remains

within 3 cycles. Further, Fig. 11(c) also shows the percentage

of messages which experience no delay in acquiring a path.

Path setup options. We study two modes of link reservation:

(a) Round trip acquire: links are acquired for the total period

of accessing a remote slice. In this mode, link selection has to

be performed only once for sending a request and response. (b)

One-way acquire: Links are acquired only for sending a one-

way message. Each message in the system selects links before

traversal. The graph on the left in Fig. 16 shows that acquiring

links separately for each message delivers better performance

than acquiring links for round trips.

TLB invalidation. We investigated the effect of sending an

invalidate request to a TLB slice because of a shootdown or

flush from any core. We considered various ways in which an

invalidate message can be sent across a the TLB interconnect.

The straightforward way is to send an invalidate from each

core to the TLB slice. This policy is simple but may lead

to congestion in the interconnect if all the cores are trying

to invalidate from the same slice. The other way is to send

the invalidate message to a central location which can then

manage invalidations to all the slices. This can be further split

up by having a manager for a set of n slices. The graph on the

right in Fig. 16 shows the speedup of workloads with different

ways of sending an invalidate message compared to each core

sending its own invalidate message.

Page table walk policies. We considered two policies for

performing page table walks:

Page table walk at the remote core: The core which has the

L2 slice for the virtual address performs the page walk and

then sends the new translation as a response to the requesting

core after inserting it in the L2 slice.

Page table walk at the request core: On an L2 TLB slice miss,

a miss message is sent to the requesting core. The requesting

core then performs the page table walk and sends an insert
message to the remote slice.

Fig. 17 shows speedups using policies. While performing

the page table at the remote node involves sending fewer

messages on the interconnect, it pollutes the local cache of the

280

0.8
1

1.2
1.4

Re
qu

es
t

Re
m
ot
e

Re
qu

es
t

Re
m
ot
e

Re
qu

es
t

Re
m
ot
e

16-core 32-core 64-core

Sp
ee

du
p

average canneal graph500 gups xsbench

Fig. 17: Page walks at requesting and remote core.

TABLE III: Speedups for a 32-core Haswell system. We study the
impact of prefetching, hyperthreading, and page table walk latencies
on the speedups achieved by NOCSTAR and other shared L2 TLB
configurations versus private L2 TLBs. Speedup averages across
workloads, as well as minima/maxima are shown.

.
Pref. SMT PTW Lat. Min Avg Max

Monolithic 0.89 0.92 0.99
No 1 Variable Distributed 1.02 1.07 1.09

NOCSTAR 1.11 1.16 1.26
Monolithic 0.85 0.94 1.01

1 1 Variable Distributed 0.99 1.1 1.12
NOCSTAR 1.08 1.2 1.29
Monolithic 0.89 0.96 1.01

1, 2 1 Variable Distributed 1.01 1.13 1.15
NOCSTAR 1.1 1.25 1.32
Monolithic 0.87 0.89 0.99

1-3 1 Variable Distributed 0.99 1.08 1.11
NOCSTAR 1.12 1.18 1.28

Monolithic 0.92 0.94 1.01
No 2 Variable Distributed 1.04 1.1 1.12

NOCSTAR 1.14 1.21 1.31
Monolithic 0.93 0.95 1.03

No 4 Variable Distributed 1.01 1.13 1.15
NOCSTAR 1.16 1.27 1.33

Monolithic 0.84 0.88 0.93
No 1 Fixed-10 Distributed 0.94 0.95 0.99

NOCSTAR 1.01 1.04 1.08
Monolithic 0.89 0.92 0.99

No 1 Fixed-20 Distributed 1.02 1.07 1.09
NOCSTAR 1.08 1.14 1.24
Monolithic 0.93 0.97 1.03

No 1 Fixed-40 Distributed 1.05 1.09 1.13
NOCSTAR 1.11 1.18 1.27
Monolithic 1.05 1.08 1.12

No 1 Fixed-80 Distributed 1.08 1.13 1.17
NOCSTAR 1.18 1.26 1.33

remote core (degrading performance). We see that performing

the page table walk at requesting core delivers slightly better

results compared to page table walk at remote core.

Sensitivity studies. We have quantified the NOCSTAR with

other configurations (see Table III). The first row quantifies

the average and min/max speedups for our workloads for a 32-

core Haswell. We compare this to scenarios with prefetching

(Pref. column label), with hyperthreading (SMT column), and

with varying page table walk latency (PTW Lat. column).

We first compare these numbers to a scenario where TLB

prefetching is enabled. The original shared TLB paper studied

the impact of prefetching translations ±1, 2, and 3 virtual

pages adjacent to virtual pages prompting a TLB miss [34].

We run these experiments with our monolithic, distributed, and

NOCSTAR configurations in rows 2-4. We find that NOCSTAR’s

benefits are consistently enjoyed even in the presence of

prefetching. Like the original shared TLB paper, we find that

prefetching translations for up to ±2 virtual pages away is

most effective, with more aggressive prefetching polluting the

TLB. However, in every one of these scenarios, the shared L2

TLB’s bigger size implies that there is less pollution versus

private L2 TLBs. Additionally, NOCSTAR’s reduced access la-

tency versus the monolithic and distributed approaches means

that accurate prefetching can yield better performance.

Table III quantifies the impact of running multiple hyper-

threads. The more the number of hyperthreads run per core,

the higher the TLB pressure. As expected, this means that

shared L2 TLBs offer hit rate benefits over private L2 TLBs;

when combined with NOCSTAR’s superior access latency, the

performance exceeds distributed and monolithic results.

Finally, Table III quantifies NOCSTAR’s performance as a

function of the page table walk latency. We classify page

table walk latency as variable (corresponding to a realistic

simulation environment where the page table walk latency

depends upon where in the cache the desired translations

reside) or fixed-N (where we fix the page table walk la-

tency to N cycles). As expected, when the page table walk

latency is unrealistically low (i.e., 10 cycles), the monolithic

and distributed TLBs severely harm performance. This is

because these configurations suffer higher access latencies,

while their higher hit rates are not useful because the impact

of a TLB miss is minor. Nevertheless, even in this situation,

NOCSTAR outperforms private L2 TLBs. In more realistic

scenarios where the page table walk latency is 20-40 cycles

(which is what we typically find them to be on real systems

[4, 24, 28, 34]), NOCSTAR’s performance notably exceeds

other options. And in scenarios where page table walks are

very high (i.e., 80 cycles), these benefits become pronounced,

with NOCSTAR outperforming distributed L2 TLBs by 13%

on average.

Multiprogrammed combinations of sequential workloads.
Our target platform is the 32-core Haswell system. Our work-

loads consist of combinations of four workloads, leading to

330 combinations overall. Each workload executes 8 threads

to utilize all 32 cores. Fig. 18 sorts our results by overall IPC

improvement. NOCSTAR is particularly effective for multipro-

gramming because it offers the utilization benefits of shared

TLBs without penalizing applications with high access latency.

So, it always improves aggregate IPC compared to the other

approaches; in contrast, monolithic degrades performance

for about half the workloads because of access latency issues

while distributed degrades 10% of the workloads.

The bottom graph in Fig. 18 shows the speedup of the

worst-performing application. As shown, monolithic and

distributed see many cases (almost half the combina-

281

Fig. 18: (Left) Overall throughput on 32 cores with 330 combina-
tions of 4 workloads; and (Right) Speedup of the worst-performing
sequential application over private L2 TLBs.

tions) where at least one application suffers performance loss

due to high access latency. Sometimes, degradation is severe;

e.g., 40%. In contrast, only in 7% of the workloads does

NOCSTAR degrade performance. Not only is this relatively

rare, the extent of the performance loss is relatively benign,

with worst cases of 2-3% versus private L2 TLBs. This

problem is reminiscent of interference issues in LLCs and

can likely be alleviated with LLC QoS/fairness mechanisms

[59, 60]. We leave these for future work.

Pathological workloads. Our studies thus far suggest that

most real-world workloads do not tend to generate significant

congestion. For this reason, to stress-test NOCSTAR, we have

devised two classes of microbenchmarks.

1 TLB storm microbenchmark: The first microbenchmark

triggers frequent context switches and page remappings. This

forces ”storms” of L2 TLB invalidations/accesses that congest

the network. We take the workloads that we have profiled so

far and we concurrently execute a custom-microbenchmark.

We modify the Linux scheduler to context switch between our

workloads and the microbenchmark; normally, Linux permits

context switching at 10ms granularity, but we study unreal-

istically aggressive context switches from 0.5ms onwards for

the purposes of stressing NOCSTAR. The custom microbench-

mark is then designed to allocate 4KB pages, promote them

to 2MB superpages, and then break then into 4KB pages

again. The confluence of our modified Linux scheduler and

our microbenchmark is a massive number of TLB misses

and invalidations. Every context switch on our x86 Haswell

systems forces all shared TLB contents to be flushed, followed

by a storm of L2 TLB lookups for data. Furthermore, every

time our microbenchmark promotes 4KB pages to a 2MB

superpage, it invalidates 512 distinct L2 TLB entries.

Fig. 19 quantifies the slowdown of our workload with this

TLB activity. Results are averaged across all workloads and

we vary core counts. We focus on the case which generates the

maximum network congestion by context switching at 0.5ms;

our microbenchmark generates as many as 200-300 L2 TLB

accesses per kilo-instruction, which is more than the TLB

stressmarks in prior work [5, 28].

Fig. 19 shows that even the TLB pressure imposed by our

microbenchmark naturally degrades performance versus the

scenario where the benchmark is standalone (i.e., alone). As

we can see, the w/ub results representing the microbenchmark

suffer from as much as 10-20% performance degradation.

However, in ever single case, NOCSTAR vastly outperforms

Fig. 19: Average speedups for workloads versus private L2 TLB con-
figuration, for varying core counts. Bars for alone represent results
from when the workloads run alone (i.e., matching already-presented
data). Bars for w/ub represent data for when the workloads were
concurrently run with the TLB storm microbenchmark.

the other approaches. For example, the monolithic banked

L2 TLBs degrade performance by as much as 20-30% versus

private L2 TLBs in the presence of this level of contention.

On the other hand, NOCSTAR continues to achieve 7-11%

performance improvements on average. While this is certainly

lower than the 18%+ performance improvements achievable

without congestion, these results are promising. Furthermore,

the improvements achieved by NOCSTAR improve when we

change our context switching granularity from an unreason-

ably aggressive 0.5ms to 1-10ms.

2 TLB slice microbenchmark: We have also crafted a second

microbenchmark to test what happens when there is immense

congestion on one TLB slice. In this microbenchmark, we

run N-1 threads on our N-core machine. All these threads are

designed to continuously access the L2 TLB slice assigned to

the Nth core. Naturally, this approach degrades performance

most severely. However, we find that in every single case,

NOCSTAR continues to do better (by 3-5%) over private L2

TLBs. Furthermore, NOCSTAR is, in the most conservative

scenario, 7% better than any other shared L2 TLB approach

(i.e., either the monolithic banked, or distributed approaches).

Consequently, NOCSTAR continues to be a better alternative

than any other shared L2 TLB configuration.

VI. CONCLUSIONS

This study proposes NOCSTAR, a TLB-NOC co-design that

achieves the high hit rates of shared TLBs without compro-

mising access time. We show that the higher hit rate delivered

by shared TLBs is overshadowed by the high latency posed

by the TLB structure and the network involved in traversing

to it. Moreover, a traditional distributed architecture does not

deliver the potential performance gains because of network

latency. By co-designing distributed TLBs with a SMART

interconnect, NOCSTAR improves multi-threaded and multi-

programmed workload performance.

VII. ACKNOWLEDGMENTS

We thank Gabriel Loh and Jan Vesely for their feedback

on improving early drafts of this work. We thank Google and

VMware for their support in making this work possible. We

thank Hyoukjun Kwon for providing scripts for synthesis and

place-and-route of the SRAMs. Srikant Bharadwaj’s work was

partly supported by the DARPA CHIPS project.

282

REFERENCES

[1] A. Bhattacharjee, “Preserving virtual memory by mitigat-

ing the address translation wall,” in IEEE Micro, 2017.

[2] A. Bhattacharjee and D. Lustig, “Architectural and oper-

ating system support for virtual memory,” in Synthesis
Lectures on Computer Architecture, Morgan Claypool
Publishers, 2017.

[3] M. Talluri and M. D. Hill, “Surpassing the TLB perfor-

mance of superpages with less operating system support,”

in ASPLOS, 1994.

[4] G. Cox and A. Bhattacharjee, “Efficient address trans-

lation for architectures with multiple page sizes,” in

ASPLOS, 2017.

[5] B. Pham, V. Vaidyanathan, A. Jaleel, and A. Bhattachar-

jee, “CoLT: Coalesced large-reach TLBs,” in MICRO,

2012.

[6] C. Park, T. Heo, J. Jeong, and J. Huh, “Hybrid TLB

Coalescing: Improving TLB Translation Coverage Un-

der Diverse Fragmented Memory Allocations,” in ISCA,

2017.

[7] B. Pham, A. Bhattacharjee, Y. Eckert, and G. H. Loh,

“Increasing TLB reach by exploiting clustering in page

translations,” in HPCA, 2014.

[8] Y. Marathe, N. Gulur, J. Ryoo, S. Song, and L. John,

“CSALT: Context switch aware large TLB,” in MICRO,

2017.

[9] J. Ryoo, N. Gulur, S. Song, and L. John, “Rethinking tlb

designs in virtualized environments: A very large part-

of-memory TLB,” in ISCA, 2017.

[10] M. Parasar, A. Bhattacharjee, and T. Krishna, “SEESAW:

Using superpages to improve VIPT caches,” in ISCA,

2018.

[11] B. Pham, J. Vesely, G. Loh, and A. Bhattacharjee,

“Large pages and lightweight memory management in

virtualized environments: Can you have it both ways?”

in MICRO, 2015.

[12] M. Talluri, S. Kong, M. Hill, and D. Wood, “Tradeoffs

in Supporting Two Page Sizes,” in ISCA, 1992.

[13] J. Navarro, S. Iyer, P. Druschel, and A. Cox, “Practical,

Transparent Operating System Support for Superpages,”

in OSDI, 2002.

[14] Y. Kown, H. Yu, S. Peter, C. Rossbach, and E. Witchel,

“Coordiated and Efficient Huge Page Management with

Ingens,” in OSDI, 2016.

[15] A. Basu, J. Gandhi, J. Chang, M. D. Hill, and

M. M. Swift, “Efficient virtual memory for big memory

servers,” in ISCA, 2013.

[16] J. Gandhi, A. Basu, M. Hill, and M. Swift, “Effi-

cient memory virtualization: Reducing dimensionality of

nested page walks,” in MICRO, 2014.

[17] V. Karakostas, J. Gandhi, F. Ayar, A. Cristal, M. D.

Hill, K. S. McKinley, M. Nemirovsky, M. M. Swift, and

O. Ünsal, “Redundant memory mappings for fast access

to large memories,” in ISCA, 2015.

[18] J. Gandhi, V. Karakostas, F. Ayar, A. Cristal, M. Hill,

K. McKinley, M. Swift, and O. Unsal, “Range trans-

lations for fast virtual memory,” in MICRO Top Picks,

2016.

[19] D. Lustig, A. Bhattacharjee, and M. Martonosi, “TLB

improvements for chip multiprocessors: Inter-core coop-

erative tlb prefetchers and shared last-level TLBs,” in

ACM TACO, 2013.

[20] A. Bhattacharjee and M. Martonosi, “Characterizing the

tlb behavior of emerging parallel workloads on chip

multiprocessors,” in PACT, 2009.

[21] A. Bhattacharjee and M. Martonosi, “Inter-Core Coop-

erative TLB Prefetchers for Chip Multiprocessors,” in

ASPLOS, 2010.

[22] A. Saulsbury, F. Dahlgren, and P. Stenström, “Recency-

based TLB preloading,” in ISCA, 2000.

[23] G. B. Kandiraju and A. Sivasubramaniam, “Going the

distance for TLB prefetching: an application-driven

study,” in ISCA, 2002.

[24] A. Bhattacharjee, “Translation-triggered prefetching,” in

ASPLOS, 2017.

[25] T. Barr, A. Cox, and S. Rixner, “SpecTLB: A mechanism

for speculative address translation,” in ISCA, 2011.

[26] A. Bhattacharjee, “Breaking the address translation wall

by accelerating memory replays,” in IEEE Micro Top
Picks, 2018.

[27] S. Srikantaiah and M. Kandemir, “Synergistic TLBs for

high performance address translation in chip multipro-

cessors,” in MICRO, 2010.

[28] A. Bhattacharjee, “Large-reach memory management

unit caches,” in MICRO, 2013.

[29] T. W. Barr, A. L. Cox, and S. Rixner, “Translation

caching: Skip, don’t walk (the page table),” in ISCA,

2010.

[30] B. Pichai, L. Hsu, and A. Bhattacharjee, “Address transla-

tion for throughput oriented accelerators,” in IEEE Micro
Top Picks, 2015.

[31] B. Pichai, L. Hsu, and A. Bhattacharjee, “Architectural

support for address translation on GPU,” in ASPLOS,

2014.

[32] J. Power, M. Hill, and D. Wood, “Supporting x86-64

address translation for 100s of GPU lanes,” in HPCA,

2014.

[33] S. Shin, G. Cox, M. Oskin, G. Loh, Y. Solihin, A. Bhat-

tacharjee, and A. Basu, “Scheduling page table walks for

irregular GPU applications,” in ISCA, 2018.

[34] A. Bhattacharjee, D. Lustig, and M. Martonosi, “Shared

last-level TLBs for chip multiprocessors,” in HPCA,

2011.

[35] M. Kumar, S. Maass, S. Kashyap, J. Vesely, Z. Yan,

T. Kim, A. Bhattacharjee, and T. Krishna, “LATR: Lazy

translation coherence,” in ASPLOS, 2018.

[36] B. Pham, D. Hower, A. Bhattacharjee, and T. Cain,

“TLB shootdown mitigation for low-power many-core

servers with L1 virtual caches,” in Computer Architecture
Letters, 2018.

[37] Z. Yan, J. Vesely, G. Cox, and A. Bhattacharjee, “Hard-

283

ware translation coherence for virtualized systems,” in

ISCA, 2017.

[38] J. Vesely, A. Basu, M. Oskin, G. Loh, and A. Bhat-

tacharjee, “Observations and opportunities in architecting

shared virtual memory for heterogeneous systems,” in

ISPASS, 2016.

[39] A. Bhattacharjee, “Large-reach memory management

unit caches,” in MICRO, 2013.

[40] Intel, “Intel 64 and IA-32 architectures optimization

reference manual,” 2016.

[41] R. Ho, K. Mai, and M. Horowitz, “Managing wire

scaling: a circuit perspective,” in Proceedings of the
IEEE International Interconnect Technology Conference
(IITC), 2003.

[42] N. Hardavellas, M. Ferdman, B. Falsafi, and A. Ailamaki,

“Reactive NUCA: near-optimal block placement and

replication in distributed caches,” in ISCA, 2009.

[43] C. Kim, D. Burger, and S. W. Keckler, “An adaptive,

non-uniform cache structure for wire-delay dominated

on-chip caches,” in ASPLOS, 2002.

[44] C. H. O. Chen, S. Park, T. Krishna, S. Subramanian,

A. P. Chandrakasan, and L. S. Peh, “Smart: A single-

cycle reconfigurable noc for soc applications,” in De-
sign, Automation Test in Europe Conference Exhibition
(DATE), 2013.

[45] Y. H. Chen, T. Krishna, J. Emer, and V. Sze, “14.5

eyeriss: An energy-efficient reconfigurable accelerator for

deep convolutional neural networks,” in IEEE Interna-
tional Solid-State Circuits Conference (ISSCC), 2016.

[46] N. D. E. Jerger, T. Krishna, and L. Peh, On-Chip
Networks, Second Edition, ser. Synthesis Lectures on

Computer Architecture. Morgan & Claypool Publishers,

2017.

[47] J. Kim, W. J. Dally, and D. Abts, “Flattened butterfly: A

cost-efficient topology for high-radix networks,” ISCA,

2007.

[48] T. Krishna, C. H. O. Chen, W. C. Kwon, and L. S. Peh,

“Breaking the on-chip latency barrier using smart,” in

HPCA, 2013.

[49] A. Jaleel, E. Borch, M. Bhandaru, S. Steely, and J. Emer,

“Achieving non-inclusive cache performance with inclu-

sive caches temporal locality aware (TLA) cache man-

agement policies,” in MICRO, 2010.

[50] J. Vesely, A. Basu, A. Bhattacharjee, G. Loh, M. Oskin,

and S. Reinhardt, “Generic system calls for GPUs,” in

ISCA, 2018.

[51] WindRiver, “Wind River Simics product note,” 2015.

[52] P. Hammarlund, “4th generation Intel x2122; core pro-

cessor, codenamed Haswell,” in IEEE Hot Chips Sympo-
sium (HCS), 2013.

[53] D. Lustig, G. Sethi, M. Martonosi, and A. Bhattachar-

jee, “COATCheck: Verifying memory ordering at the

hardware-OS interface,” in ASPLOS, 2016.

[54] D. Lustig, G. Sethi, A. Bhattacharjee, and M. Martonosi,

“Transistency models: Memory ordering at the hardware-

OS interface,” in IEEE Micro Top Picks, 2017.

[55] S. Li, J. H. Ahn, R. Strong, J. Brockman, D. Tullsen,

and N. Jouppi, “McPAT: An integrated power, area, and

timing modeling framework for multicore and manycore

architectures,” in MICRO, 2009.

[56] C. Bienia, S. Kumar, J. P. Singh, and K. Li, “The PAR-

SEC benchmark suite: characterization and architectural

implications,” in PACT, 2008.

[57] M. Ferdman, A. Adileh, O. Kocberber, S. Volos, M. Al-

isafaee, D. Jevdjic, C. Kaynak, A. D. Popescu, A. Aila-

maki, and B. Falsafi, “Clearing the Clouds: A Study of

Emerging Scale-out Workloads on Modern Hardware,”

in ASPLOS, 2012.

[58] V. Karakostas, J. Gandhi, A. Cristal, M. Hill, K. S.

McKinley, M. Nemirovsky, M. M. Swift, and O. Ünsal,

“Energy-efficient address translation,” in HPCA, 2016.

[59] D. Sanchez and C. Kozyrakis, “Vantage: Scalable and

efficient fine-grained partitioning,” in ISCA, 2011.

[60] H. Cook, M. Moreto, S. Bird, K. Dao, D. Patterson, and

K. Asanovic, “A hardware evaluation of cache partition-

ing to improve utilization and energy-efficiency while

preserving responsiveness,” in ISCA, 2013.

284

