
Exploring Parallelism in Volume Ray Casting:
Understanding the Programming Issues of Multithreaded

Accelerators

Guilherme Cox
Department of Computer

Science
Rutgers University

guilherme.cox@rutgers.edu

Cleomar Silva
Department of Electrical

Engineering
Pontifical Catholic University

of Rio de Janeiro
cleomar@ele.puc-rio.br

Leandro Cupertino
Department of Electrical

Engineering
Pontifical Catholic University

of Rio de Janeiro
cuper@ele.puc-rio.br

Cristiana Bentes
Department of Systems

Engineering
State University of Rio de

Janeiro
cris@eng.uerj.br

Ricardo Farias
COPPE/Systems Engineering

and Computer Science
Federal University of Rio de

Janeiro
rfarias@cos.ufrj.br

ABSTRACT
Direct volume rendering of irregular 3D datasets demands
high computational power and memory bandwidth. Recent
research in optimizing volume rendering algorithms are ex-
ploring the high processing power offered by a new trend in
hardware design: multithreaded accelerator devices. Accel-
erators like the Graphics Processing Units (GPU) and the
Cell Broadband Engine processor (Cell BE) are used as in-
tegrated coprocessors, and the off-loading of the application
from the CPU to the accelerator offers promising speedups.
The difficulty in using these devices, however, is how to pro-
gram them efficiently, since their architectural features may
be completely distinct. In this paper, we present some new
architectural-aware algorithms for irregular grid rendering
based on the ray casting method, designed for the Cell BE
and the GPU. We investigate the ray traversal inside each
accelerator in terms of data access, load balancing, and code
divergence, and find new opportunities for performance op-
timizations based on the ray casting specific needs. Our
results show that squeezing these architectures for perfor-
mance reveals their limitations and can significantly improve
the ray casting efficiency.

Categories and Subject Descriptors
D.1.3 [Software]: Concurrent Programming—Parallel Pro-

gramming

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
PMAM 2012 February 26, 2012 New Orleans LA, USA
Copyright 2012 ACM 978-1-4503-1211-0/12/02 ...$10.00.

General Terms
Graphics Applications, Parallel Architectures

Keywords
Direct Volume Rendering, Parallel Ray Casting, Accelerator
Programming

1. INTRODUCTION
Direct volume rendering with ray casting is a popular

technique for visualizing 3D data volumes that captures the
overall data domain, considering the volume as a medium
in which light can be absorbed, or scattered as it passes
through the volume. The images are produced with high
quality and without losing the information inside the data.
The volume data to be traversed by the rays are usually
defined over a grid, and two approaches can be taken: reg-
ular and irregular grids. Since regular grids are not suitable
to represent disparate fields, we focus here on irregular grid
representations, composed by tetrahedral cells.

The ray casting of irregular grids, however, is particu-
larly challenging due to the lack of implicit adjacency of the
cells in these grids. The ray casting algorithm has to de-
termine the ray intersection with each tetrahedron, and to
handle the geometry and topology of the volume. There-
fore, in order to generate high-quality images, irregular grid
ray casting has to perform a huge amount of floating-point
computations while the dataset is crossed through, resulting
in a computationally expensive process. The performance is
proportional to the size of the volume data, and the size
of the final image to be projected on the screen. Gener-
ally irregular grid ray casting achieves only a low fraction of
theoretical peak performance.

More contemporary approaches to the optimization of the
ray casting computation are geared towards exploiting the
high processing power offered by specialized hardware, such
as multithreaded accelerator devices. Typically, the compu-
tationally intensive parts of the application are off-loaded to
the accelerator, which serves as an integrated coprocessor.

64

These accelerator devices emerged as a new trend in hard-
ware design, and two important examples of such devices
are: the Graphics Processing Units (GPU), and the Cell
Broadband Engine processor (Cell BE). They offer promis-
ing speedups and are available off-the-shelf. It is likely that
most supercomputers will be equipped with such devices in
the future. Consequently, it is vital that the ray casting al-
gorithms deal with hybrid architectures composed by a mix
of regular CPUs and specific accelerators.

The problem in such architectures is how to program these
devices efficiently. Their architectural features may be com-
pletely different, e.g. number of cores, size of caches, and
structure of the memory system. Although many efforts
have been devoted to design algorithms that fit to the accel-
erators, programmers are still having a hard time in trying
to get the most of these architectures. Accelerators are typi-
cally optimized for specific program structure and data pat-
terns. They will perform poorly for computations that fall
outside the optimized usage. GPUs are particularly sensi-
tive to the number of threads that are created, to the global
memory accesses, and to code divergence. Cell BE, on the
other hand, is sensitive to load balancing, to scheduling, and
to data accesses due to the lack of a caching mechanism on
the hardware. There is, therefore, a critical need to under-
stand how the ray casting performance is affected by these
questions.

This paper builds upon previous work on parallel irregu-
lar grid ray casting algorithms for the GPU and the Cell BE
proposed, respectively, by Maximo et al. in [1] and Cox et al.

in [2]. We made a detailed performance study of these algo-
rithms on the accelerator devices and observed that, aside
from the speedups obtained, squeezing these architectures
for performance reveals their limitations and new oppor-
tunities for optimizations based on the ray casting specific
needs. So, we propose here new architectural-aware algo-
rithms for these platforms. In the design of these algorithms,
we closely investigate what happens during the ray traversal
inside each accelerator in terms of data access, load balanc-
ing, and code divergence, in order to find room for new im-
provements and performance gains. Our algorithms include
mechanisms that: (i) explore a hybrid CPU/GPU overlap-
ping collaborative work; (ii) avoid code divergence in the
GPU; (iii) include a software-managed caching mechanism
in the Cell BE; and (iv) reduce the load balancing effects
in both platforms. Our results show that these mechanisms
can provide dramatic performance improvements. The algo-
rithms proposed achieve high speedups even for the memory
bound and computationally expensive process of irregular
grid ray casting.

The remainder of this paper is organized as follows. In
Section 2, we review the previous work on accelerating ir-
regular grid ray casting. In Section 3, we provide a brief
description of the two accelerators architectures, the GPU
and the Cell BE. Section 4 describes the sequential irregular
grid ray casting algorithm: VF-Ray. Section 5 describes the
accelerated algorithms for the GPU and the Cell processor.
In Section 7, we report our experimental results. Section 8
presents our conclusions and future research plans.

2. RELATED WORK
Ray casting of irregular data has been studied in the liter-

ature for many years. An important contribution was pro-
vided by Max in [3], where the volume rendering equations

were formally described, accounting for the absorption and
multiple scattering of the light as it passes through the vol-
ume. In terms of the ray casting algorithms, the first algo-
rithms were implemented entirely in software and focused on
the data structures to store the connectivity of cells. Garrity
[4] proposed a way to compute the entry and exit of each
ray, that was further improved by Bunyk et al. [5], by com-
puting for each pixel a list of intersections on visible faces.
Later, Ribeiro et al. [6] proposed consistent and significant
gains in memory usage, and in the correctness of the final
image, over Bunyk’s approach. The algorithm proposed in
[6], called VF-Ray, is the basis of the accelerated ray casting
implementations.

Recently, with the widespread adoption of hardware accel-
erators, like GPUs and Cell BE, different implementations
of irregular grid ray casting were proposed to explore these
architectures. Weiler et al. [7] implemented a GPU-based
ray casting algorithm that was further extended by Espinha
and Celes [8]. Bernardon et al. [9] also proposed a GPU-
based algorithm based on ray casting that rendered non-
convex irregular grids. In a later work [10], they proposed
another GPU-based algorithm for irregular grids to handle
time-varying data. Some attempts have been made to deal
with the problem of the GPU memory limitation. Weiler
et al. [11], Fout and Ma [12], and Mensmann et al. [13]
used data compression. Maximo et al. [1] implemented a
new scheme for storing the face data. Scharsach et al. [14]
divided the volume into bricks through which rays are cast
independently, but focused on regular grids. Mensmann et

al. [15] also focused on regular grids and proposed the use
of stream processing with the volume segmented into into
slabs.

Another way of dealing with large datasets in the GPU
is to use out-of-core techniques. The classic approach of an
out-of-core technique is to organize the massive volumetric
data into an octree. This approach was widely studied in
the context of regular grids, since it is easily breakable into
smaller blocks [16, 17, 18, 19]. The work by Smelyanskiy
et al. [20] proposed a threaded data-parallel implementa-
tion of ray casting that explores the architectural trends of
multicores and GPUs, and an upcoming many-core proces-
sor. They tackled the communication overhead using com-
pression and analyzed the cache behavior of their approach.
They focused on regular grids and divided the computation
by breaking the volume into bricks.

Recently, there are also some works on exploring multiple
GPUs to render large datasets. Strengert et al. [21] devel-
oped a system in which the volume was divided into bricks
and a wavelet was used for compression on small GPU clus-
ters. Marchesin et al. [22] also proposed a multi-GPU vi-
sualization system based on the division of a volume data
into bricks. Their work focused on adapting the volume
rendering pipeline commonly used on clusters to a multi-
GPU architecture. Muller et al. [23] developed a distributed
memory volume renderer that runs on multiple GPUs also
based on volume bricking, but with some optimizations like
empty-space-skipping and load balancing. The recent work
by Fogal et al. [24] extended Muller et al. ideas to allow
the rendering of larger datasets, by removing the restriction
that the data must fit in the combined texture memory of
the GPU. The work by Moloney et al. [25] implemented a
volume renderer that run on a 32-node GPU system. Their
work took advantage of the image decomposition to improve

65

load balancing and to accelerate the rendering using occlu-
sion and culling. Eilemann et al. [26] presented a generic
and flexible framework for parallel rendering which handles
a variety of different data for a wide range of platforms in-
cluding clusters of GPUs. All these work, however, focused
on the rendering of regular datasets.

The power of the Cell BE processor has been exploited in
[2] for ray casting of irregular grids and in [27] for regular
grids. None of these previous work, however, explored the
particularities of different accelerators architectures to im-
prove the memory bound process of the ray traversing in a
irregular grid ray casting.

3. ACCELERATORS ARCHITECTURE
In this section, we provide a brief description of the accel-

erators studied: the Graphics Processing Unit (GPU) and
the Cell Broadband Engine (Cell BE).

3.1 Graphics Processing Unit (GPU)
A GPU can be viewed as a highly parallel, many-core

stream-processing unit that support a great number of fine-
grain threads. The NVIDIA CUDA [28] programming model
was created for developing applications for this platform.
CUDA allows the programmer to define special C functions,
called kernels, that are executed in parallel by different CUDA
threads. The programmer organizes these threads into a hi-
erarchy of grids of thread blocks. A thread block is a set
of concurrent threads that can cooperate among themselves
through synchronization and shared memory accesses. Dur-
ing execution, CUDA threads may access data in multiple
levels of the memory hierarchy: private local memory, shared
memory and global memory. Each thread has a private local
memory. Each thread block has a shared memory visible to
all threads on the block, and all threads have access to the
global memory.

In the GPU architecture, all threads in one block run
the same instruction on one streaming multiprocessor (SM).
Each SM consists of a number of processing elements, called
Stream Processors or SPs. The number of SPs in a SM
depends on the architecture and model of the GPU. The
threads in a thread block are time-sliced onto these SPs in
groups of 32 threads called warps. All the threads in a warp
execute the same instruction or remain idle. In this way,
different threads can perform branching and other forms of
independent work. L1 and L2 caches have been included in
the recently released Fermi architecture.

3.2 Cell BE
The Cell BE is a heterogeneous multicore architecture

that contains nine cores. One general purpose Power Pro-
cessing Element (PPE) and eight special purpose Synergis-
tic Processing Elements (SPEs). The SPEs are optimized
for compute-intensive tasks, which emphasizes its power to
SIMD processing. The SPEs can operate independently
from the PPE, but they depend on the PPE to run the op-
erating system and to start the threads. Each SPE includes
a small private memory, the Local Store, with 256KB. All of
the components of the Cell BE chip are internally connected
through a high bandwidth bus, called Element Interconnect
Bus (EIB).

Cell BE does not provide caching and the SPEs cannot
access main memory directly. Since all the code and data
being processed by the SPE must fit in this local memory,

any data needed by the SPE, that is stored in the main
memory, must be loaded explicitly by software into the lo-
cal memory, through asynchronous DMA operations. The
challenge is to coordinate the DMA operations in order to
overlap the data transfers with computation.

4. VISIBLE FACES RAY CASTING (VF-RAY)
In the ray casting paradigm [29], a ray is cast from the

viewpoint through each pixel of the image. As the ray moves
forward, it intersects a number of cells in the volume data.
For each cell, the two intersections with its faces are used to
compute the contribution of the cell for the pixel color and
opacity. The ray stops when it reaches full opacity, or when
it leaves the volumetric data.

The accelerated ray-casting algorithms studied here are
based on the sequential Visible Faces Ray Casting (VF-Ray)
algorithm [6]. VF-Ray handles irregular grids composed by
tetrahedral or hexahedral cells. Its main goal is to compute
the internal faces intersections efficiently with a minimum
memory footprint. The previous results of VF-Ray showed
that its memory footprint was only from 1/6 to 1/3 of the
memory used by the traditional ray casting approaches, with
comparable performance.

In the ray casting algorithm, each time a ray intersects a
face of a cell, the face intersection is calculated using a line-
plane intersection method from linear algebra. The plane is
defined by the plane equation created from the three vertices
of a triangular face of one tetrahedron1. The computations
of these equations are costly, but the geometry and the coef-
ficients of these equations can be reused, since the majority
of the faces are intersected by more than one ray. The prob-
lem of reusing this data is that a structure to store all the
faces would consume a lot of memory space.

The VF-Ray algorithm tackles this problem by storing the
face data only for the traversals of the rays under the pro-
jection of a visible face (a face whose normal points towards
the viewer). These rays have a high probability of inter-
secting almost the same set of internal faces, and they are
called visible set. The structure containing the face data is
maintained by VF-Ray only during the traversal of a visible
set, and is called face buffer.

The algorithm starts in a preprocessing step, where the
volumetric data is read and organized in memory in a set
of data structures that contains: a list of all vertices, a list
of all cells, and a list of external faces. For a certain point
of view, the rendering process begins by rotating the data,
according to the viewing direction. The external faces list is
traversed to determine the visible faces of the data.

After that, the core of the VF-Ray renderer is executed,
which is shown in Algorithm 1. For each visible face, fv,
the algorithm starts by projecting fv on the screen deter-
mining the visible set of fv. To perform this projection, the
algorithm determines the rectangular bounding-box of each
triangular visible face and, then, performs a scan-convert

process to find the pixels under the projection of the face.
The scan-convert sweeps the rectangular area, and checks
for each pixel in the bounding-box if the ray cast through
out this pixel intersects the triangular face. Then, for each
ray r in the visible set, the algorithm has to compute the
entry and exit points, ein and enext, of the ray in each cell.
Initially, ein is found in the visible face, fv. Then, each

1The faces of hexahedral cells are broken into two triangles.

66

exit face, fnext, has to be found in order to determine the
intersection enext. The next face is found by the function
FindNextFace that checks which of the other three faces of
the tetrahedron that fin belongs is the exit of the ray. Every
time a face is traversed, its coefficients are saved in the face

buffer (if they do not exist already). The lighting integral
is computed from ein to enext using an emission-absorption
optical model as proposed in [30]. This computation deter-
mines the contribution of the cell on the color and opacity
of the pixel associated to r.

Algorithm 1 VF-Ray Main loop

1: for each visible face fv do
2: Scan-convert the bounding box of fv to find the visible

set
3: for each ray r in visible set of fv do
4: fin ← fv
5: ein ← intersection entry point of r in fv
6: repeat
7: fnext ← FindNextFace (r, fin)
8: if fnext exists in face buffer then
9: retrieve parameters of fnext

10: else
11: compute parameters of fnext

12: Save fnext parameters in the face buffer

13: enext ← intersect r with fnext

14: Compute lighting integral from ein to enext

15: fin ← fnext and ein ← enext

16: until r exits the data
17: Clear the face buffer

5. GPU ACCELERATED VF-RAY
The parallelization of the ray casting algorithm is rela-

tively simple: every ray cast can be traced through the vol-
ume independently from every other ray. In the GPU, this
potential parallelism has to map into the fine-grain GPU
threads. For the VF-Ray algorithm, a straightforward map-
ping scheme would be to assign the computation of one vis-
ible face to each GPU thread and take advantage of the face

buffer. This mapping scheme was proposed in [1] and we
call this algorithm VFRay-GPU. Although VFRay-GPU
was designed to parallelize VF-Ray to exploit the massive
computational capacity of the GPU, some other architec-
tural features of the GPU were not taken into account. So,
we propose here a different approach, called VFRay-CPU-
GPU, that is more conscious to the difficulties the GPU has
in dealing with code divergence and load imbalance. We pro-
pose a different work distribution, and a hybrid CPU/GPU
approach with an overlapping collaborative work among the
CPU and GPU.

5.1 VFRay-GPU
The VFRay-GPU algorithm starts in the CPU by reading

the volumetric dataset and computing the external faces of
the data. The external faces are copied to the GPU texture
memory. After that, the whole rendering process is assigned
to the GPU, with three kernels.

In the first kernel, each thread reads one external face
from the texture memory and determines if it is visible or
not. Its goal is to generate the set of visible faces, that
guides the order in which the rays are cast and the face data

Figure 1: Code divergence example on the scan-
conversion.

stored. The first kernel accounts for less than 5% of the total
execution time.

In the second kernel, each thread computes the bounding
box for one visible face. The bounding-boxes are stored in
the global memory. This kernel is very simple, with negligi-
ble execution time.

In the third kernel, each thread is responsible for per-
forming the ray casting for all pixels in the visible set of its
assigned visible face. It implements the main loop of the VF-
Ray algorithm. Each thread starts retrieving the data for
one visible face, fv, which includes its vertices coordinates
and its bounding-box. The algorithm, then closely follows
the procedure presented in Algorithm 1. The thread per-
forms a scan-convert to find the pixels under the projection
of fv, the visible set. For the pixels in the visible set, the
FindNextFace function is called to return the intersection,
enext, with the next face. The contribution of the current
cell to the color of the pixel is computed by solving the
lighting integral. The algorithm continues this process until
there is no next face, when the ray has left the volumetric
data, and the thread ends.

The merit of VFRay-GPU is to provide low memory us-
age for the memory-consuming problem of irregular grid ray
casting. This is an important issue for GPU computation,
and VFRay-GPU presented in [1] notable results for render-
ing on the GPU, when compared to other GPU-based ray
casting implementations. The parallelization scheme imple-
mented in VFRay-GPU, however, can generate load imbal-
ance, since the size of the visible sets greatly varies from face
to face. In addition, the scan-convert process and the ray
computation can generate a lot of code divergence. In Fig-
ure 1, we show an example of two different visible faces and
their bounding-boxes. If two threads start to scan-convert
these faces, they will check each pixel of the bounding-box.
In the third pixel check, each thread will follow a different
path and they are serialized. Most of the scan-conversion
of these faces are serialized, which can significantly degrade
the GPU performance.

5.2 VFRay-CPU-GPU
The VFRay-CPU-GPU algorithm was designed to address

the load imbalance and the code divergence issues of the
GPU. In our approach, we propose a new parallelization
scheme where each thread is responsible for the computation
of just one pixel. This scheme resulted in a better load
balancing among the threads. In addition, we delegate part
of the previous third kernel heavy work to the CPU. This
hybrid CPU/GPU approach aims to exploit the different

67

architectural abilities of each type of processor to deal with
specific operations.

Just like VFRay-GPU implementation, VFRay-CPU-GPU
algorithm starts by reading the volumetric data and com-
puting the list of external faces, as a preprocessing stage.
VFRay-CPU-GPU is also composed of three kernels. The
first kernel determines the visible faces. The second kernel
computes the bounding-box for the visible faces, in the same
way VFRay-GPU algorithm does.

The third kernel is entirely different. The scan-convert
process is not performed by the GPU, but assigned to the
CPU. The CPU reads the list of visible faces and their
bounding-boxes from the GPU global memory, performs the
scan-convert and stores the list of pixels to be rendered in a
structure called pixList. The overlapping CPU/GPU work
begins in the following way: (1) CPU copies the pixList to
the GPU global memory; (2) The third kernel runs on the
GPU; (3) CPU builds the next pixList; (4) CPU waits for
the GPU to finish the current pixList; (5) repeat the loop
from step (1) until all the visible faces were processed. Note
that, while the GPU kernel is rendering all the pixels in the
current pixList, the CPU is creating the next pixList, and
the communication between the CPU and the GPU is done
via explicit data copies to the global memory.

Each thread performs the ray casting for only one pixel of
the pixList. In order to manage the number of pixels in the
pixList, the CPU takes care of building this list according
to the number of threads to be launched on the GPU. If t
threads will be launched, the CPU scan-converts a number
of visible faces until the pixList is populated with at least
t pixels. If the pixList contains more than t pixels, the
remaining pixels are saved for the next list. The task of
each thread of the third kernel, therefore, is to perform the
traversal of one ray, following the Algorithm 1.

The parallelization scheme of VFRay-CPU-GPU, one pixel
per thread, reduces the benefits of using the face buffer of
VF-Ray, since the computation of one visible face is spread
over different cores of the GPU that may not have access
to the same shared memory. Nevertheless, it improves the
load balancing of the ray casting, since all the threads re-
ceives the same amount of pixels to compute. Besides the
parallelization scheme, the hybrid CPU/GPU approach also
improves the rendering. First, because reducing the size of
the third kernel allows the overlapping of the computation
of scan-conversion with the ray traversal. Second, because
determining if a pixel projects inside a visible face or not,
and performing a loop over a set of pixels comprises con-
ditional statements, which may be a major source of per-
formance degradation in the GPU. VFRay-CPU-GPU takes
profit from the higher performance of the CPU when dealing
with branches and performs these operations in the CPU.

6. VF-RAY ON THE CELL BE
The heterogeneous architecture of the Cell BE, implies

a hybrid programming model, since the PPE and the SPEs
have different computational capabilities. The PPE is highly
optimized for scalar computation and the SPEs are engi-
neered for high speed vector and floating-point computation.
This feature of the SPE and the limited size of its local mem-
ory, make the programming on the Cell BE to usually follow
the practice of computing rather than using pre-computed
results. Using a list of precomputed values can be inefficient
on Cell BE programs, since it does not SIMDize well and

consumes valuable local memory space. So, the straightfor-
ward parallelization of the VF-Ray on the Cell BE favor the
recomputation of the face data on the SPEs and does not use
the face buffer. This parallelization was proposed in [2] and
we call this algorithm VRay-Cell. Although VRay-Cell
explored the SIMD and the asynchronous memory trans-
fer abilities of the SPEs, it did not explore the actual ca-
pacity of each SPE of storing data. We present here three
three new implementations of the VF-Ray algorithm for the
Cell BE architecture that explore the local memory of each
SPE and implement a software-managed caching mecha-
nism. The first implementation is called VRay-Cell-Pixel
and distributes the work computation by pixel. The second
and third implementations, called respectively VRay-Cell-
Face and VRay-Cell-Tile propose different schemes for
the distribution the work load among the SPEs.

6.1 VFRay-Cell
All the Cell BE implementations include two different pro-

grams, one that runs on the PPE, and another that runs on
the SPE. The PPE program reads and stores the structures
for the volumetric data, in the global memory, computes the
list of external faces, creates the SPEs threads, and organizes
and dispatches the work to the SPEs. The work of preparing
the data for distribution is done by the PPE asynchronously
with the rendering processing carried by the SPEs.

In VFRay-Cell, the projection of the visible faces is done
by the PPE, since the projections are essentially scalar op-
erations. After the projection of a visible face, the PPE is
responsible for distributing the work among the SPEs. The
work distribution done by the PPE assigns one pixel to each
SPE to compute. The SPE algorithm is constantly waiting
for a notification message from the PPE. This message may
be either a pixel to be processed or a quit signal. The prob-
lem with the pixel computation is that a SPE cannot store in
its local memory all vertices and cell data of the tetrahedra
intersected by the rays. The SPEs have to be constantly fed
with such data. This strategy leads to an intensive commu-
nication between the SPEs and the main memory, requiring
the implementation of a data streaming mechanism in or-
der to avoid SPE stalls while waiting for data. After the
first intersection is computed, the rendering loop starts by
calling FindNextFace function to find the next intersection.
With the two intersections, the algorithm can compute the
the lighting integral. But before computing the integral, the
SPE requests the data for the next tetrahedron. This way,
the SPE can overlap the computation of the lighting integral,
with the data transfer. Overlapping these memory transfer
with computation is vital to get full beneficial results from
the Cell BE implementation.

6.2 VFRay-Cell-Pixel
In the VFRay-Cell-Pixel algorithm, the projection of the

visible faces is also done by the PPE, which is responsible
for distributing the work among the SPEs. The PPE as-
signs one pixel to each SPE, by sending messages to the
SPEs while there are pixels to be computed, just like in the
VFRay-Cell algorithm. However, in VFRay-Cell, the com-
putation of the intersection of the ray with a face, requires
that the SPE always computes the coefficients of the equa-
tions that define the face algebraic representation. Since this
computation is expensive, in VFRay-Cell-Pixel we include
a face buffer mechanism. The problem with including the

68

face buffer is that the limited memory of the SPE does not
support the whole structure. So, we created in VFRay-Cell-
Pixel a face buffer cache with a restricted size. This cache
is implemented using a hash function to include a new face
data in the cache. When there is a collision in the inser-
tion, the old face data is discarded. The first time a face
is intersected the face coefficients are computed using the
SPE SIMD facilities. When a new visible face computation
begins, the face buffer cache is flushed.

Regarding the tetrahedra data for the ray traversal, the
VFRay-Cell-Pixel algorithm employs the same data stream-
ing mechanism proposed in VFRay-Cell, and explores the
asynchronous memory transfer abilities of the SPEs to feed
them with the tetrahedra data.

6.3 VFRay-Cell-Face
In the VFRay-Cell-Pixel work distribution, the computa-

tion of a face visible set is spread over the SPEs. In this way,
the benefits of the VF-Ray face buffer are diminished. The
idea behind the face buffer is that the rays under the pro-
jection of a visible face have high probability of intersecting
the same set of internal faces. So, we propose a different
algorithm, VFRay-Cell-Face, where the work is distributed
by face, rather than by pixel. In other words, in VFRay-
Cell-Face, the work message from the PPE contains the in-
formation about all the pixels in a visible set.

The SPE algorithm computes the traversal of each ray in
the visible set in the same way done by VFRay-Cell-Pixel,
using a data streaming mechanism to overcome the SPE
memory limitation. After all the pixels in the visible set are
computed, the face buffer cache is flushed. Computing all
the pixels of a visible set in the same SPE allows VFRay-
Cell-Face to profit from data reuse in the face buffer cache.

6.4 VFRay-Cell-Tile
The third algorithm is called VFRay-Cell-Tile. This algo-

rithm proposes a different scheme for the work distribution
on the SPEs. Instead of distributing the pixels of a visible
set, VFRay-Cell-Tile divides the screen into tiles, and dis-
tributes to the SPE the pixels that lie inside a tile. The idea
behind this approach is that a distribution by face would
generate load imbalance, just like the load imbalance ob-
served in VFRay-GPU, due to the different sizes of the vis-
ible sets.

In VFRay-Cell-Tile, the PPE algorithm is slightly differ-
ent. According to the image resolution, the PPE first divides
the screen into R × R rectangular tiles, where the tile res-
olution is proportional to the image size. The PPE, then,
computes the external and the visible faces. For each visi-
ble face, the algorithm associates the face with a tile on the
screen. A face belongs to the same tile that its first vertex
belongs to. After this association is done, the tile division
changes. Instead of dividing the pixels in rectangular tiles,
the algorithm, in fact, aggregate the visible faces in sets with
similar sizes, as shown in Figure 2.

The PPE sends to each SPE one visible face set for com-
putation. The SPE algorithm, then, computes the traversal
of each ray in the visible faces set in the same way done
by VFRay-Cell-Pixel and VFRay-Cell-Face. However, in
VFRay-Cell-Tile, the face buffer cache is maintained not
only in the computation of one visible face, but during the
computation of all the faces in the set. In this way, the face

buffer cache is flushed when the computation of the set fin-

Figure 2: Grouping the visible faces guided by tile
screen division.

ishes. The grouping of visible faces done by VFRay-Cell-
Tile provides a more reasonable load distribution among
the SPEs than the visible face distribution implemented in
VFRay-Cell-Face.

7. EXPERIMENTAL RESULTS
In this section, we present the performance evaluation of

the GPU and Cell BE algorithms. We first describe our ex-
perimental setup and datasets, and then present the results
for the two accelerators separately. It is not our intention
to compare the GPU and Cell BE results, since the two ac-
celerators are completely different in terms of the number of
cores and clock frequency. In addition, the Cell BE proces-
sor is a relatively outdated processor when compared to the
GPU used in our tests. Our idea here is to show the perfor-
mance of our algorithms in each of the accelerators and the
necessary changes in the ray casting algorithm to take the
best from such different architectures.

7.1 Experimental Setup
The implementation of VF-Ray on the GPU was written

in C++ and CUDA, using CUDA driver 3.1 and SDK 3.0.
The Cell BE implementation was written in C++, using
SIMD extensions included with the IBM SDK 3.1. The GPU
implementation was tested on the NVIDIA GTX 480 based
on the Fermi architecture (480 cores, 1.4 GHz, 1.5 GB). The
Cell BE implementation was tested on a Sony Playstation3
console, where the Cell BE processor operates with only six
out of the eight SPEs. The CPU used as the baseline for the
sequential execution was an Intel Quad Core 2.66GHz with
2MB of L2 cache and 2GB of memory.

We used four well-known representative tetrahedral datasets:
SPX from Lawrence Livermore National Lab, Liquid Oxy-
gen Post, Blunt Fin, and Delta Wing from NASA. SPX is a
real irregular dataset, containing a hole in the grid, bring-
ing extra difficulties to the renderer. Delta Wing, Liquid
Oxygen Post and Blunt Fin are tetrahedralized versions of
regular, curvilinear datasets. Liquid Oxygen Post, in partic-
ular, is very thin and presents different rendering complex-
ity according to the viewing direction. The images rendered
with VFRay-CPU-GPU for all these datasets are shown in
Figures 3 to 6. Table 1 shows the number of vertices, exter-
nal faces, and tetrahedra cells of each dataset. We rendered
images with different resolutions, varying from 512× 512 to
4096× 4096 pixels, from different points of view.

69

Figure 3: Blunt Fin image.

Figure 4: Oxygen Post image.

Figure 5: SPX image.

7.2 GPU Results
Table 2 shows the execution times for all datasets and im-

Figure 6: Delta Wing image.

Dataset # Verts # Ext Faces # Tets

Blunt Fin 41 K 381 K 187 K
Oxygen Post 109 K 1.0 M 513 K

SPX 149 K 1.6 M 827 K
Delta Wing 211 K 2.0 M 1.0 M

Table 1: Datasets description.

ages resolutions, for VFRay-GPU and VFRay-CPU-GPU.
As we can observe in this table, VFRay-CPU-GPU out-
performs VFRay-GPU for all datasets in all resolutions.
The performance difference, however, is more significant for
larger image resolutions. As the image resolution increases,
the visible faces project to a larger amount of pixels, and,
therefore, the effects of load imbalance are more prominent
for VFRay-GPU. In addition, since the GPU performance
is very sensitive to the presence of conditional branching,
another important improvement of VFRay-CPU-GPU is to
put the CPU in charge of the scan-conversion of the visible
faces and the work distribution. The code divergence gener-
ated by the scan-conversion process, exemplified in Figure 1,
runs almost sequentially in the third kernel of VFRay-GPU.
To measure the effect of code divergence, we modified the
third kernel of VFRay-CPU-GPU by inserting a loop control
mechanism. This is done by making each thread render two
pixels in the pixList instead of one. The loop control mecha-
nism slowed down the execution in about 10 times compared
to the results of the original VFRay-CPU-GPU. In addition
to the reduction in the code divergence, the hybrid CPU-
GPU strategy used in VFRay-CPU-GPU also reduced the
number of registers used per thread.

Table 3 shows the execution times for the VF-Ray algo-
rithm running on the CPU, and the speedups obtained by
VFRay-CPU-GPU when compared to the CPU execution.
As we can observe, VFRay-CPU-GPU provides impressive
accelerations over the CPU execution for all the datasets.
As expected, the best speedup results were obtained for the
largest image resolution, where more pixels are computed.

7.3 Cell Results
Table 4 compares the execution times of VFRay-Cell and

VFRay-Cell-Pixel for 6 SPEs, all datasets and all images res-
olutions. VFRay-Cell-Pixel obtained considerable gains over

70

VFRay-GPU VFRay-CPU-GPU

Resolution Blunt Post SPX Delta Blunt Post SPX Delta

512× 512 0.07 0.17 0.43 0.67 0.08 0.12 0.12 0.12
1024× 1024 0.23 0.66 1.51 2.67 0.12 0.21 0.19 0.21
2048× 2048 0.87 2.75 6.32 10.59 0.22 0.54 0.34 0.46
4096× 4096 3.53 11.70 25.29 42.40 0.58 1.80 0.97 1.44

Table 2: VFRay-GPU and VFRay-CPU-GPU execution times (sec).

CPU VFRay-CPU-GPU Speedups

Resolution Blunt Post SPX Delta Blunt Post SPX Delta

512× 512 1.25 2.70 2.22 3.72 15.6 22.5 18.5 31.0
1024× 1024 4.75 10.44 6.57 13.65 39.6 49.7 34.6 65.0
2048× 2048 18.60 40.98 23.41 52.79 84.5 75.9 68.8 114.7
4096× 4096 73.54 161.98 90.65 208.32 126.8 90.0 93.4 144.7

Table 3: CPU results (in seconds) and speedup for VFRay-CPU-GPU.

VFRay-Cell. For larger image resolutions, the VFRay-Cell-
Pixel runs almost two times faster than VFRay-Cell. These
results confirm that the caching of face data controlled by
software brings significant performance gains to the ray cast-
ing algorithm. In other words, the overhead introduced by
the face buffermechanism is compensated by the elimination
of the recomputation of the faces parameters.

The gains obtained by the caching mechanism we intro-
duced, however, do not increase linearly with the increase
in the dataset size. In fact, the gains depend on the dataset
shape and on the point of view. The problem arises with
the irregularity of the datasets. A dataset in which the rays
have a long length for their traveling path can produce worse
results, due to the overhead of searching for the face in the
face buffer cache. This overhead may surpass the cost of
recomputing the face.

Table 5 shows the execution times of VFRay-Cell-Face
and VFRay-Cell-Tile (tile division 256 × 256), for 6 SPEs
execution, all datasets and images resolutions. The times in
this table show that both VFRay-Cell-Face and VFRay-Cell-
Tile outperform VFRay-Cell-Pixel. These results confirm
that the better use of the face cache data improves the ray
casting efficiency. When we compare VFRay-Cell-Face with
VFRay-Cell-Tile, we observe that VFRay-Cell-Tile performs
slightly better, due to the better load balancing achieved.
However, the tile size can have influence in the load balanc-
ing, smaller tiles tend to generate more imbalanced work,
and for a tile division smaller than 128× 128, VFRay-Cell-
Face outperforms VFRay-Cell-Tile.

7.4 Discussion
The ray casting computation comprises the computation

of the rays intersections with the volumetric data and the
computation of the lighting integral. Within the rendering
loop, about 30% of the time is spent in the lighting integral,
while the other 70% of the time is spent in finding the next
intersection. The tradeoff in designing an efficient algorithm
for irregular grid ray casting is that the irregular nature of
the grid implies in large data structures to handle the geom-
etry and topology of the volume, and the more information
is kept in memory, the faster the algorithm computes the
next intersection of the ray. One of the fastest sequential
algorithms for ray casting was proposed by Bunyk et al. in
[5], but its memory consumption would be prohibitive for
running in accelerator devices with current datasets.

The interesting issue about the modern accelerators is

that their architectures favors processing over memory in
their die area. So the ray casting algorithm must be care-
fully redesigned to fit in these architectures. Based on the
observation that the decision of how to store the face data
is the key for memory consumption, our study observed dif-
ferent behavior depending on the accelerator architecture.
The basis of the VF-Ray algorithm is the face buffer. The
use of this buffer, however, had opposite significance in the
GPU and Cell BE algorithms. This was observed in the dis-
tribution of the ray computation in the different algorithms.
When the computation is distributed one pixel to each core,
the benefits of using the face buffer is reduced since the data
from the previous pixel computation is not reused. In the
GPU architecture, where there is a great number of cores
and a very small cache shared by all cores2, it was better
to recompute the face data than to reuse it. The GPU was
more sensitive to load imbalance and code divergence, but
has enough cores to recompute the faces parameters. In the
Cell BE architecture, on the other hand, there is a moder-
ate number of cores and each core has a limited amount of
memory inside it. In this case, it was better to distribute
the work by tiles and take benefit from the face buffer than
performing the computation pixel-by-pixel.

8. CONCLUSIONS
The new trend in hardware design, multithreaded acceler-

ators, offers opportunities and challenges for parallel irreg-
ular grid ray casting algorithms. In this work, we presented
a detailed study on irregular grid ray casting algorithms de-
signed on the VF-Ray approach for the Cell BE and the
GPU architectures. This study allowed us to better un-
derstand the accelerators limitations and propose some new
architectural-aware algorithms, where we focus on handling
CPU/GPU collaborative work, code divergence in the GPU,
data caching and load balancing.

The overall results of our study demonstrated that the
most natural parallelization scheme of the VF-Ray algo-
rithm on the Cell BE and on the GPU presented some
performance issues and left room for improvements. The
VF-Ray algorithm introduced the face buffer structure to
overcome the memory bound process of traversing a irreg-
ular grid. Our results showed that the use of this struc-
ture had different impact in the accelerated algorithms. In
the GPU architecture, the face buffer had limited relevance,

2We run our experiments on the Fermi architecture

71

VFRay-Cell VFRay-Cell-Pixel

Resolution Blunt Post SPX Delta Blunt Post SPX Delta

512× 512 1.83 3.02 1.64 2.32 1.32 1.57 1.51 1.64
1024× 1024 7.22 12.10 6.31 9.22 5.23 5.86 4.42 5.72
2048× 2048 28.81 48.41 25.21 36.85 20.71 22.84 14.86 22.04
4096× 4096 116.61 195.02 101.10 149.5 83.21 91.20 56.44 88.26

Table 4: VFRay-Cell and VFRay-Cell-Pixel execution time results (sec).

VFRay-Cell-Face VFRay-Cell-Tile

Resolution Blunt Post SPX Delta Blunt Post SPX Delta

512× 512 1.26 1.43 1.12 1.39 1.12 1.46 1.15 1.36
1024× 1024 4.99 5.49 3.53 5.09 4.40 5.54 3.58 4.89
2048× 2048 19.92 21.69 13.04 19.82 18.03 21.68 13.28 19.31
4096× 4096 79.79 86.67 51.26 79.26 70.58 86.98 52.27 77.13

Table 5: VFRay-Cell-Face and VFRay-Cell-Tile execution time results (sec).

with a huge number of cores it was better to recompute the
data. In the Cell BE, on the other hand, the use of a face

buffer cache provided important performance gains. Besides
the face buffer effects, one of our observations is that load
imbalance, allied to the cost in handling threads with diver-
gent computations, can easily degrade the ray casting per-
formance in the accelerators. The GPU showed to be very
sensitive to code divergence, and both accelerators required
a careful work distribution scheme to avoid load imbalance.
Speedup results demonstrated that being more conscious to
the details of the accelerator architecture can provide sig-
nificant performance improvements. Despite of the high
speedup achieved, generalizing an algorithm for these plat-
forms is difficult, there is still a significant learning curve
and optimization effort involved in porting codes to these
environments.

While modern accelerators have opened the door to cheap
and powerful data-parallel architectures, these devices do
not necessarily always present good performance results.
Our future work aims to investigate further optimizations
on the hybrid CPU-GPU version and a multi-GPU imple-
mentation.

9. REFERENCES
[1] A. Maximo, S. Ribeiro, C. Bentes, A. Oliveira,

R. Farias, Memory efficient gpu-based ray casting for
unstructured volume rendering, in: IEEE/EG
International Symposium on Volume and Point-Based
Graphics, 2008, pp. 55–62.

[2] G. Cox, A. Maximo, C. Bentes, R. Farias, Irregular
grid raycasting implementation on the cell broadband
engine, in: Proceedings of the 21st International
Symposium on Computer Architecture and High
Performance Computing, 2009, pp. 93–100.

[3] N. Max, Efficient light propagation for multiple
anisotropic volume scattering, in: In Proceedings of
the 5th Eurographics Workshop on Rendering, 1994,
pp. 87–104.

[4] M. P. Garrity, Raytracing irregular volume data, in:
Proceedings of the Workshop on Volume
Visualization, ACM Press, 1990, pp. 35–40.

[5] P. Bunyk, A. Kaufman, C. Silva, Simple, fast, and
robust ray casting of irregular grids, Advances in
Volume Visualization, ACM SIGGRAPH 1 (24)
(1998) 30–37.

[6] S. Ribeiro, A. Maximo, C. Bentes, A. Oliveira,
R. Farias, Memory-aware and efficient ray-casting
algorithm, in: Proceedings of the XX Brazilian
Symposium on Computer Graphics and Image
Processing, 2007, pp. 147–154.

[7] M. Weiler, M. Kraus, M. Merz, T. Ertl,
Hardware-Based Ray Casting for Tetrahedral Meshes,
in: Proceedings of the 14th IEEE conference on
Visualization, 2003, pp. 333–340.

[8] R. Espinha, W. Celes, High-quality hardware-based
ray-casting volume rendering using partial
pre-integration, in: Proceedings of the XVIII Brazilian
Symposium on Computer Graphics and Image
Processing, 2005, pp. 273–281.

[9] F. F. Bernardon, C. A. Pagot, J. L. D. Comba, C. T.
Silva, GPU-based Tiled Ray Casting using Depth
Peeling, Journal of Graphics Tools 11.3 (2006) 23–29.

[10] F. F. Bernardon, S. P. Callahan, J. L. Comba, C. T.
Silva, An adaptive framework for visualizing
unstructured grids with time-varying scalar fields,
Parallel Computing 33 (6) (2007) 391–405.

[11] M. Weiler, P. N. Mallon, M. Kraus, T. Ertl,
Texture-encoded tetrahedral strips, in: Proceedings of
the IEEE Symposium on Volume Visualization and
Graphics, 2004, pp. 71–78.

[12] N. Fout, K.-L. Ma, Transform coding for
hardware-accelerated volume rendering, IEEE
Transactions on Visualization and Computer Graphics
13 (6) (2007) 1600–1607.

[13] J. Mensmann, T. Ropinski, K. H. Hinrichs, A
gpu-supported lossless compression scheme for
rendering time-varying volume data, in: IEEE/EG
International Symposium on Volume Graphics,
Eurographics Association, 2010, pp. 109–116.

[14] H. Scharsach, M. Hadwiger, A. Neubauer,
S. Wolfsberger, Perspective isosurface and direct
volume rendering for virtual endoscopy applications,
in: Eurographics/IEEE-VGTC Symposium on
Visualization, 2006, pp. 315–322.

[15] J. Mensmann, T. Ropinski, K. H. Hinrichs, An
advanced volume raycasting technique using gpu
stream processing, in: GRAPP: International
Conference on Computer Graphics Theory and
Applications, INSTICC Press, Angers, 2010, pp.
190–198.

72

[16] E. Gobbetti, F. Marton, J. A. I. Guitian, A single-pass
gpu ray casting framework for interactive out-of-core
rendering of massive volumetric datasets, Visual
Computer 1 (24) (2008) 797–806.

[17] W. Li, K. Mueller, A. Kaufman, Empty space skipping
and occlusion clipping for texture-based volume
rendering, in: Proceedings of the 14th IEEE
Visualization, IEEE Computer Society, Washington,
DC, 2003, pp. 42–50.

[18] C. Lux, B. Fröhlich, Gpu-based ray casting of multiple
multi-resolution volume datasets, in: Proceedings of
the 5th International Symposium on Advances in
Visual Computing: Part II, Springer-Verlag, Berlin,
Heidelberg, 2009, pp. 104–116.

[19] J. Xue, K. Lu, J. Tian, An efficient out-of-core volume
rendering method based on ray casting and gpu
acceleration, in: IEEE Youth Conference on
Information, Computing and Telecommunication,
2009, pp. 130–133.

[20] M. Smelyanskiy, D. Holmes, J. Chhugani, A. Larson,
D. M. Carmean, D. Hanson, P. Dubey, K. Augustine,
D. Kim, A. Kyker, V. W. Lee, A. D. Nguyen, L. Seiler,
R. Robb, Mapping high-fidelity volume rendering for
medical imaging to cpu, gpu and many-core
architectures, IEEE Transactions on Visualization and
Computer Graphics 15 (6) (2009) 1563–1570.

[21] M. Strengert, M. MagallÃşn, D. Weiskopf, S. Guthe,
T. Ertl, Hierarchical visualization and compression of
large volume datasets using gpu clusters, in: In
Eurographics Symposium on Parallel Graphics and
Visualization, 2004, pp. 41–48.

[22] S. Marchesin, C. Mongenet, J.-M. Dischler, Multi-gpu
sort-last volume visualization, in: Symposium on
Parallel Graphics and Visualization, 2008, pp. 1–8.

[23] C. Muller, M. Strengert, T. Erl, Optimized volume
raycasting for graphics-hardware-based cluster
systems, in: Eurographics Symposium on Parallel
Graphics and Visualization, 2006, pp. 59–66.

[24] T. Fogal, H. Childs, S. Shankar, J. Krueger,
D. Bergeron, P. J. Hatcher, Large data visualization
on distributed memory multi-gpu clusters, in: High
Performance Graphics, 2010, pp. 57–66.

[25] B. Moloney, M. Ament, D. Weiskopf, T. Moller,
Sort-first parallel volume rendering, IEEE
Transactions on Visualization and Computer Graphics
17 (2011) 1164–1177.

[26] S. Eilemann, M. Makhinya, R. Pajarola, Equalizer: A
scalable parallel rendering framework, IEEE
Transactions on Visualization and Computer Graphics
15 (2009) 436–452.

[27] J. Kim, J. Jaja, Streaming model based volume ray
casting implementation for cell broadband engine,
Scientific Programming 17 (1-2) (2009) 173–184.

[28] NVIDIA, CUDA,
http://developer.nvidia.com/object/cuda.html

(2010).

[29] S. D. Roth, Ray Casting for Modeling Solids,
Computer Graphics and Image Processing 18 (2)
(1982) 109–144.

[30] N. Max, Optical models for direct volume rendering,
IEEE Transactions on Visualization and Computer
Graphics 1 (1995) 99–108.

73

