
Irregular Grid Raycasting Implementation on the Cell Broadband Engine

Guilherme Cox∗, André Máximo†, Cristiana Bentes∗ and Ricardo Farias†
∗Department of System Engineering, State University of Rio de Janeiro

Rua São Francisco Xavier, 524, Bl. D, 5o floor – Rio de Janeiro, RJ, Brazil, 20550-900
Email: cris@eng.uerj.br, cox@eng.uerj.br

†System Engineering and Computer Science Program-COPPE, Federal University of Rio de Janeiro
Cidade Universitária, Centro de Tecnologia, Bl. H – Rio de Janeiro, RJ, Brazil, 21945-970

Email: andmax@cos.ufrj.br, rfarias@cos.ufrj.br

Abstract—Direct volume rendering has become a popular
technique for visualizing volumetric data from sources such
as scientific simulations, analytic functions, medical scanners,
among others. Volume rendering algorithms, such as ray-
casting, can produce high-quality images, however, the use
of raycasting has been limited due to its high demands on
computational power and memory bandwidth. In this paper, we
propose a new implementation of the raycasting algorithm that
takes advantage of the highly parallel architecture of the Cell
Broadband Engine processor, with 9 heterogeneous cores, in
order to allow efficient raycasting of irregular datasets. All the
computational power of the Cell BE processor, though, comes
at the cost of a different programming model. Applications
need to be rewritten, which requires using multithreading
and vectorized code. In our approach, we tackle this problem
by distributing ray computations using the visible faces, and
vectorizing the lighting integral operations inside each core.
Our experimental results show that we can obtain good
speedups reducing the overall rendering time significantly.

Keywords-parallel rendering; cell processor; raycasting;

I. INTRODUCTION

Interpreting the surrounding world as visual images is an
activity humans have been engaged in throughout history.
Scientific visualization plays an important role in the scien-
tific process, as simulations, experiments and data collection
comprise an enormous and permanently increasing accu-
mulation of information. Many application areas, includ-
ing medicine, geology, biology, chemistry, fluid dynamics,
molecular science or environmental protection, depend more
and more on visualization as an effective way to obtain an
intuitive understanding of problems.

There are many different techniques for visualizing three
dimensional data. Basically these can be separated as indi-
rect and direct methods. Indirect methods are based on the
reconstruction of polygonal data, which can be rendered like
isosurface data. In this method, only part of the volumetric
dataset directly contributes to the output image. In direct
methods, on the other hand, all the data has the potential to
contribute to the output image. The aim of direct methods,
called volume rendering, is to map a set of data values
defined throughout a volumetric grid to some color and
opacity values over the final image. Volume rendering has

the advantage of visualizing the complete dataset, exposing
its interior, producing high-quality images, but due to the
excessive amount of sampling and composition operations
performed, they demand high computational power.

Furthermore, depending on the type of the grid used to
represent the volumetric data, memory requirements can
also be another obstacle for volume rendering algorithms.
Irregular grids, with tetrahedral and/or hexahedral cells, have
vertices at arbitrary locations. For this reason, irregular grids
can represent the field only where it is relevant. However,
because of the lack of implicit adjacency in the irregular
grids, the coordinates of the vertices need to be explicitly
represented, as well as the connectivity among them. As a
result, irregular volume grids require relatively larger storage
space than regular grids.

Therefore, the main challenges in designing high-
performance volume rendering algorithms for irregular grids
are: (i) the computational power required for traversing the
data in order to compute the color and opacity of each
pixel on the screen, and (ii) the memory usage required for
keeping all connectivity information for the data.

Significant research efforts have attempted to tackle these
challenges using massively parallel graphics processors
(GPU) [1], [2], [3], [4] and cluster-based parallelism [5],
[6], [7], [8]. These studies take advantage of the continuing
improvements in CPU and GPU performances as well as
increasing multicore cluster-based parallelism.

Despite of the great advances achieved by these two
approaches, some drawbacks must be pointed out. The
implementation of a performance-aware raycasting algo-
rithm in the GPU, requires the programmer to face with:
the limited memory capacity, and the high-latency GPU-
CPU data transfer. While the implementation on clusters
requires fine-tuned implementations in order to solve the
data distribution, load balancing and image composition
communication problems.

So, in this work, we propose an alternative way for
high-performance volume rendering of irregular grids rather
than the use of Graphics Processing Units (GPUs) or
cluster-based parallelism: exploring the power of the Cell
Broadband Engine processor. The Cell BE processor is a

21st International Symposium on Computer Architecture and High Performance Computing

1550-6533/09 $26.00 © 2009 IEEE

DOI 10.1109/SBAC-PAD.2009.15

93

brand new heterogeneous multicore architecture developed
by IBM, Sony, and Toshiba [9]. It is used in the game
console Playstation 3 (PS3), and was also the basis for
the fastest supercomputer in the world, as announced in
the last Top 500 [10]. All the computational power of
the Cell BE processor comes at the cost of a different
programming model. Applications need to be rewritten in
order to explore the full potential of the Cell BE, which
requires the use of multithreading, the vectorization the
code, and the management of memory accesses. The overall
performance strongly depends on the the effective use of
Cell BE hardware which is largely left to the programmer.

Our approach here is to implement on the Cell BE, a
memory-efficient raycasting algorithm for volume rendering
of irregular grids, that deals with two main challenges: (i)
conforming to the memory model of the Cell BE, and (ii)
exploring SIMD programming. We propose a new parallel
algorithm that distributes ray computations to each core
using the visible faces, and vectorizes the lighting integral
operations inside each core. Our experimental results show
that we can obtain good speedups in the rendering process.

The remainder of the paper is organized as follows. In
Section II, we review the previous work in speeding up
volume rendering and in the use of Cell processor. In
Section III, we give a brief description of the Cell BE archi-
tecture. In Section IV, we discuss the Cell BE programming
model. In Section V, we describe the raycasting algorithm
used as the basis for our implementation. In Section VI, we
show our Cell implementation of the raycating algorithm. In
Section VII, we report our experimental results. Section VIII
presents our conclusions and future research plans.

II. RELATED WORK

As far as we know, this is the first Cell BE implementation
of a raycasting algorithm for irregular data. So, we give here
a brief summary of the literature in terms of: speeding up
volume rendering, and programming for the Cell BE.

A. Speeding up Volume Rendering

In recent years, there has been a growing literature about
algorithms and techniques for speeding up volume render-
ing, in particular with a focus on GPU implementations
and cluster architectures. They have been concentrated on
efficient and optimized implementations of volume rendering
algorithms and data structures used to explore GPU fea-
tures and to avoid clusters bottlenecks. The cluster-based
works focused on solving: load balancing [7], [11], screen
partition [12], [13], dataset division [6], [14], or image
composition communication [5], [8]. The GPU-based works
focused on: exploring the GPU hardware features [15], [1],
dealing with the memory limitation problem [16], [3], and
exploring GPU clusters [17], [4]. Both cluster-based and
GPU implementations expose to programmers the specificity

of the platform, just as Cell BE implementation. The differ-
ence is that in the Cell processor, dynamic management of
local memories of the cores is needed, which complicates the
rendering of irregular data. However, this exposed memory
management opens up the opportunity for peformance gains.

The work by Meibner et al. [18] goes on a different direc-
tion and present an implementation of a parallel raycasting
algorithm on a single-chip SIMD architecture, the FUZION
chip. The works by Adinetz et al. [19] and Wald et al. [20]
explore the SSE (Streaming SIMD Extension) support of
Intel architecture to accelerate the rendering process. All
these three works, however, focus on raytracing that handles
only surface data.

B. Exploring the Cell BE Processor

Being a relatively new architecture, the full potential of
the Cell processor is still being explored. Some initial works
were developed by IBM on medical imaging [21], and FFT
computation [22]. These works provided results indicating
substantial speedups when compared to conventional pro-
cessors.

In terms of volume visualization, the works by Benthin et
al. [23] and O’Conor et al. [24] explored the Cell processor
architecture for the ray-tracing algorithm for surface data.
IBM also published a work in volume visualization [25].
They implemented a raycasting for terrain rendering, where
again, only the surface data is considered. The recent work
by Kim and Jaja [26] is the most related to ours. They
implemented the raycasting algorithm on the Cell processor,
which, however, only handles regular datasets.

III. THE CELL BE PROCESSOR ARCHITECTURE

The Cell BE is quite unique as a processor. It is a
heterogeneous multicore architecture that combines a tra-
ditional PowerPC core with multiple mini-cores, that have
limited, but SIMD-optimized, set of instructions. A sin-
gle chip contains a Power Processing Element (PPE) and
eight Synergistic Processing Elements (SPEs). The SPEs
are optimized for compute-intensive tasks, and can operate
independently from the PPE. However, they run threads
spawned by the PPE, and depend on the PPE to run the
operating system.

The PPE is a traditional 64-bit dual-thread PowerPC, with
a Vector Multimedia extension (VMX) unit and two levels
of on-chip 32KB cache L1 for instruction and another 32KB
for data, and 512KB of L2 cache.

The SPEs are the primary computing engines of the Cell
processor. Each SPE is a special purpose RISC processor
with 128-bit SIMD capability that runs a Cell-specific set of
instructions. It consists of a processing core, the Synergistic
Processing Unit (SPU), a Memory Flow Controller (MFC),
and a 256KB local storage memory area. The local storage
is used to hold code and data being processed by the SPE,
but it is not a cache. The SPEs cannot access main memory

94

directly, so all the code and data being processed by the
SPE must fit in this local memory. Any data needed by
the SPE, that is stored in the main memory, must be loaded
explicitly by software into the local storage, through a DMA
operation. Data transferred between local storage and main
memory must be 128-bit aligned. The size of each DMA
transfer can be at most 16KB. Once the data is in the local
memory, the SPU can use it by explicitly loading it into
one of its 128 general-purpose registers, each 128 bits wide.
The SPU instruction set is different from the PPE instruction
set and consists of 128-bit SIMD instructions. Two SIMD
instructions can be executed per clock cycle in the SPE.

Figure 1 shows the architecture of the Cell BE processor.
The PPE accesses the main memory via the L1 and L2
caches. The PPE, SPEs, DRAM controller, and I/O con-
trollers are all connected via four on-chip data rings, called
Element Interconnect Bus (EIB). The EIB can transmit 96
bytes per cycle, for a bandwidth of 204.8 Gigabytes/second,
allowing more than 100 outstanding DMA requests.

IV. PROGRAMMING FOR THE CELL BE

The Cell BE processor presents to the programmer a
different programming model. The application performance
depends on the effective use of the special features of the
Cell BE processor.

The Cell BE processor can be programmed using standard
C and relying on the libraries from the Sofware Devel-
opment Kit (SDK) [27], that allows handling communica-
tion, synchronization, and SIMD computation. An existing
application would run on the Cell processor by a simple
recompilation of the code using only the PPE core, with no
effort, but also without advantages from a performance point
of view.

There are several key differences in coding for the Cell
processor compared to traditional CPUs:

1) The power of the SPEs comes from SIMD vector
operations. The SPEs are not optimized to run scalar
code and handling unaligned data. High performance
can only be reached if the data is organized in a way
that is suitable for SIMD calculations.

2) SPEs have no cache memory. The DMA engine is
exposed. The explicit memory access programming
poses some extra work when compared to normal
cache-based memory hierarchy. All the code and vari-
ables must be allocated in the local store. Larger data
structures in main memory can be accessed, one block
at a time, via explicit DMA transfers. Furthermore,
the DMA calls in the code have to be designed to use
double buffering or similar tricks to avoid stalling due
to latency.

3) SPEs lack branch prediction hardware. This feature
allowed the engineers to pack more computation cores
into the chip. However, a branch costs around 20

cycles, which implies that they should be avoided in
performance-aware codes.

Nevertheless, the PPE and the SPE are not binary compat-
ible. Summing up, the programming model is an important
aspect which distinguishes the Cell processor from other
processors. The Cell architecture requires careful designing
by the programmer to ensure that efficient SIMD code is
generated, SPEs are being well exploited by parallel threads,
and the data movement from main memory is orchestrated.

V. VISIBLE FACES RAYCASTING

Our volume rendering implementation on the Cell BE
processor is based on the raycasting algorithm. The basic
idea behind raycasting is to cast rays from the viewpoint
through each pixel of the image. For irregular volume data,
as a ray moves forward, it penetrates the volume intersecting
a number of cells, as illustrated in Figure 2. Every pair of
intersections is used to compute the cell contribution for the
pixel color and opacity. The ray stops when it leaves the
volume or when it reaches full opacity.

pixel

point of
view

screen

Figure 2. Raycasting scheme.

The great advantage of raycasting methods are that: the
computation for each pixel is independent of all other pixels,
and, for rendering irregular grids, the traveling of a ray
throughout the grid is guided by the connectivity of the cells,
avoiding the need of sorting the cells. The disadvantage is
the high memory consumption. So, we decided to ground our
raycasting Cell implementation on a recent memory-efficient
raycasting algorithm for irregular grids, called Visible Faces
Raycasting (VF-Ray) [28]. This algorithm uses a more
compact and non-redundant data structure that provides
consistent and significant gains in memory usage

The main focus of VF-Ray is to drastically reduce the
memory consumption in order to render very large datasets,
based on the fact that the decision of how to store the
information about the faces of each cell is the key for
memory consumption. This information is stored in a face
data structure, that includes the geometry (usually three

95

SPE

SPU

Storage
Local

MFC

SPE

SPU

Storage
Local

MFC

SPE

SPU

Storage
Local

MFC

SPE

SPU

Storage
Local

MFC

SPU

Storage
Local

MFC

SPE

SPU

Storage
Local

MFC

SPE

SPU

Storage
Local

MFC

SPU

Storage
Local

MFC

SPE SPE

Element Interconnect Bus (EIB)

Memory
Interface

PPE

Interface
Bus

L1

L2

PPU

Figure 1. Architecture of the Cell B.E. processor.

vertices), and the coefficients (for the equation of the plane
defined by the vertices) of each face. This is the most
consuming data structure in raycasting.

VF-Ray improves cache performance by keeping in mem-
ory only the face data of the traversals of a set of neighboring
rays. The decision of which rays are in this set is guided by
visible faces computation. The pixels under the projection of
a given visible face have high probability of reusing the same
set of faces, for their traversal throughout the volumetric
data. This set of pixels is called visible set.

In a preprocessing step, the volume data is read and a set
of data structures is created in memory. This step is done
only once, for all different point of views. The data structures
created in this preprocessing step are:

• Lv: a list of all vertices;
• Lc: a list of all cells, where each cell c has a pointer

to the cells that share a face with c, describing the
connectivity of the cells;

• Lext: a list of external faces of the volume.

The rendering of a single point of view starts by executing
the operations to rotate the data in the axes x, y, and z,
according to the angle of vision. After that, Lext is traversed
to determine the visible faces of the data. The visible faces
are the external faces whose normals make angles greater
than 90o with the viewing direction.

Having computed all the visible faces, algorithm 1 shows
the steps performed. For each visible face fv, the algorithm
projects fv on the screen in order to define the visible set
of fv. For each ray r that corresponds to a pixel p in the
visible set, the algorithm has to compute the entry and exit
point, ein and enext of the ray in each cell. The exit face,
fnext, is computed based on the entry face, fin, and the

connectivity stored in Lc. Every time a new face is traversed,
its coefficients are saved in a face buffer, and the lighting
integral from ein to enext is computed, using an optical
model. This step computes the contribution of the cell in
the color and opacity of pixel p.

Algorithm 1 Main loop of VF-Ray
1: Project fv on the screen
2: for each ray r in visible set of fv do
3: fin ← fv

4: ein ← intersection entry point in fv

5: repeat
6: fnext ← FindNextFace (fin)
7: enext ← intersection point in fnext

8: Save fnext parameters in the face buffer
9: Compute the lighting integral from ein to enext

10: fin ← fnext and ein ← enext

11: until r exits the data
12: Clear the face buffer

Previous results for VF-Ray [28] showed that it spent
only from 1/3 to 1/6 of the memory used by the traditional
raycasting approaches, with comparable performance.

VI. IMPLEMENTING VF-RAY ON THE CELL BE

The main challenges in implementing VF-Ray on the
Cell BE processor are: (i) Data structures have to be man-
ually 128 bytes aligned; (ii) The time-consuming compu-
tations need to be SIMD-ized; (iii) The data structures that
hold the dataset to be rendered, do not fit in the local storage
of each SPE, so DMA transfers of the next cell have to be
orchestrated; (iv) Performance-critical if-then-else branches
that execute on the SPEs need to be eliminated.

96

VF-Ray is implemented as a C++ application, with more
than 20 classes and over 10,000 lines of code. Given its
complexity, the Cell implementation was done in a step-
by-step approach, reusing as much of the original code as
possible.

The first step is to adjust the data structures. All data
structures were aligned in memory. The structures with an
arbitrary number of elements were transformed to 128-bit
vectors. For example, the class Point, that comprises
4 float elements (the coordinates of each point in the grid
along with their scalar values, α), was transformed into a
128-bit vector. In the same way, the class Cell, with
four integers being indices for its vertices and another four
integers being indices for its four neighboring cells, were
replaced by two 128-bit vectors.

After that, we accomplished the following steps: explored
SIMD facilities, parallelized ray computations on the SPEs,
and orchestrated DMA transfers. Each of these steps will be
explained in further details next.

A. Exploring SIMD Facilities

In the rendering process, there are some functions that
can be highly optimized by the use of the vector func-
tions available on the Cell BE processor. The function
that normalizes and centralizes the data according to the
screen dimensions is one of them. This function conveys a
translation followed by the multiplication of all the points
by a normalization factor. This factor is the inverse of
the diagonal of the bounding box, surrounding the data
in space. Both translation and multiplication operations of
this function were gathered in one single vector instruction:
vec_madd.

In the function FindNextFace, we have to compute the
coefficients of all the three remaining faces of the cell in
order to find the exit face of the ray, fnext. This process
was vectorized by computing all three faces coefficients at
once, with a couple of vector operations.

In the lighting integral function, we explored the fact
that the same operation is done on the pixel’s three color
components, R, G, and B. So, these three components were
packed in a vector, such that we can compute them in a
single vector operation.

B. SPE Parallelization

The most time-consuming part of VF-Ray is the one
presented in lines 5–11 of Algorithm 1. As each ray
computation is independent in the raycasting process, we
distribute the ray computations to the SPEs. However, the
data structures Lv, and Lc, that describe the connectivity of
the cells do not fit the SPEs local memories. So, we propose
here a pipeline scheme in order to feed the SPEs with the
appropriate data, and to avoid stalls.

Initially, the PPE determines the visible faces for the
current point of view. The PPE projects each visible face

on the screen creating its visible set. The pixels inside the
visible set are, then, distributed to the SPEs for the ray
computation. After that, the PPE is responsible to orchestrate
the sending of rays to the SPEs. Algorithm 2 shows the code
executed on the PPE.

Algorithm 2 PPE algorithm
1: Rotate the data for the current point of view
2: Find visible faces
3: for each visible face fv do
4: Project fv on the screen and determine its visible set
5: for each ray r in the visible set of fv do
6: Send r to an idle SPE

The SPE is responsible for the computation of the entry
and exit points of the ray in each cell, as well as the lighting
integral. However, the SPE does not have in its memory
the information about all the cells that a ray will intersect.
For one cell, the SPE can compute the entry and the exit
points of the ray, ein and enext. The face that contains the
exit point indicates the next cell to be traversed. So, the
SPE computation follows a pipeline. The SPE requests the
information about the next cell to be traversed, and while
the DMA is transferring it to the local memory, the SPE
can compute the illumination integral for the pair ein and
enext. This process is repeated, until the ray left the volume.
In this case, the SPE will request another pixel to the PPE,
and all the computation is repeated. Algorithm 3 detail the
code executed on the SPE.

Algorithm 3 SPE algorithm
1: while there is a ray r from the PPE do
2: Find the entry face fin of r
3: Find the entry point ein in fin

4: repeat
5: fnext ← FindNextFace (fin)
6: enext ← intersection point in fnext

7: Request information about next cell
8: Compute lighting integral from ein to enext

9: fin ← fnext and ein ← enext

10: until r exits the data

C. DMA Transfers

The parallelization proposed in section VI-B will only
work correctly if the SPEs could be constantly filled with
next cells. We solved this problem creating a pipeline, where
the SPEs keep computing one pair of intersections, while the
next cell is being transferred by the DMA. So, lines 7 and
8 in Algorithm 3 occur in parallel, overlapping computation
and communication. This pipeline works fine because each
DMA transfer moves data between main memory and the
local storage of each SPE in an asynchronous fashion.

97

Furthermore, the DMA engine allows the request of mul-
tiple memory blocks in one operation. Each SPE has 32
communication channels that controls synchronization and
signals with the PPE. The basic operations for requesting
and sending data from/to the main memory are mfc_get
and mfc_put, respectively.

D. Implementation Details

As the FindNextFace function is the most time-consuming
function of the SPE code, we were careful about implemen-
tation details of it. Besides, the vectorization implemented,
we also removed a performance-critical if-then-else branch
in the coefficient computation, as branches have high latency
in the SPEs. In the sequence below, we give an example of
how to remove a branch in the Cell BE. The first piece of
code is the original branch code, and the second one is the
branch-free code:

if (value < 0)
temp = p0;
p0 = p1;
p1 = temp;

test = !spu cmpgt(value, zero);
temp = p0;
p0 = spu sel(temp, p1, test);
p1 = spu sel(temp, p1, spu andc(all,test));

All variables are vectors. The command spu_cmpgt
sets the variable test for one if value < 0 and zero, if
not. The spu_sel command will select the first or second
parameter, to attribute to the variable, on the left side of the
equal sign, depending on the value of the test.

VII. EXPERIMENTAL RESULTS

In this section, we evaluate the performance of our Cell
implementation of the VF-Ray algorithm. Our experimenta-
tion platform is a Sony Playstation 3 (PS3) game console
running Linux Fedora Core 9. The PS3 contains a Cell
processor running at 3.2 GHz, with 256 MB RAM. On PS3,
the Cell processor operates with only six out of the eight
SPEs. The Cell approach of VF-Ray was written in C++,
using SIMD extensions included with the SDK 3.1.

We have used seven tetrahedral datasets that are widely
used in the literature: SPX, Blunt Fin, Oxygen Post, Delta
Wing, Fighter, F117, and Torso. Table I shows the number of
vertices, faces, and tetrahedra for each dataset, and the time
taken, in seconds, to render the dataset in the PPE, using
the vector unit (VMX), for an image with 4K×4K pixels.

A. Parallelization Performance

Figure 3 shows, for all datasets, the variation of the
execution time when the number of SPEs increases from
1 to 6. As we can observe in this graph, the increase

Dataset # Verts # Faces # Tets Rendering
Time (sec)

SPX 149 K 1.6 M 827 K 957
Blunt Fin 41 K 381 K 187 K 854

Oxigen Post 109 K 1.0 M 513 K 1768
Delta Wing 211 K 2.0 M 1.0 M 1330

Fighter 160 K 2.8 M 1.4 M 1090
F-117 48 K 480 M 240 K 431
Torso 168 K 2.1 M 1.0 M 921

Table I
DATASETS DESCRIPTION.

in the number of SPEs reduces significantly the execution
time for all the datasets. Table II shows the speedups for
these executions. The speedups are relative to the sequential
execution in the PPE, using the vector unit (VMX). So,
even considering that each SPE can perform 4 floating
point instructions at the same time (because of the 128 bit
vector units), the ideal speedup for using 1 SPE would be
2 (the PPE and SPE are computing), for 2 SPEs would be
3, and so on, since the PPE also can perform 4 floating
point instructions at the same time. Sometimes, however,
it is not possible to fulfill all the 4 floating-point units
with computation. The lighting integral computation, for
example, can only occupy 3 units, with the computation of
the components R, G, and B of the pixel color.

Nevertheless, we obtained some super-linear speedups
results. This occurs because the floating-point operations on
the SPE are faster than the PPE. This, in conjunction with
the SPE’s large register file and implicit memory transfers,
make applications to run faster on a SPE than a PPE [29].

1 2 3 4 5 6
Number of SPEs

200

400

600

800

1000

E
xe

cu
tio

n
 T

im
e
 (

se
co

n
d
s)

SPX
Blunt
Post
Delta
Fighter
F-117
Torso

Execution Time

Figure 3. Execution times for all datasets.

As we can observe in the speedup table, the increase in the
speedups are almost linear, indicating good scalability, and
also indicating that the pipeline proposed could maintain the
SPEs working almost all of the time. There is no contention
to the main memory for two reasons. First, the PPE com-

98

Dataset Number of SPEs
1 2 3 4 5 6

SPX 1.78 3.49 5.12 6.65 8.04 9.48
Blunt Fin 1.56 2.99 4.21 5.37 6.47 7.36

Oxigen Post 1.85 3.54 5.14 6.70 7.96 9.07
Delta Wing 1.85 3.54 5.08 6.52 7.78 8.93

Fighter 2.16 3.98 5.53 6.81 7.79 8.72
F117 1.97 3.50 4.68 5.60 6.34 6.84
Torso 1.52 2.97 4.30 5.55 6.72 7.74

Table II
SPEEDUPS FROM 1 TO 6 SPES.

putation is not a bottleneck, it computes only the next pixel
to be processed. Second, the SPEs memory requirements
are independent and do not overload the EIB (Element
Interconnect BUS). The overall speedup is considerable and
pays off the extra effort of the code changes.

In Table III we show, for all datasets and 6 SPEs, how
the increase in the image size, has influence in the rendering
execution time. As we can observe in this table, the execu-
tion time increases in the same proportion as the number of
pixels increases for all datasets. This result confirms that our
solution is not imposing extra overheads when more pixels
are considered for computation.

Dataset Image Sizes
2562 5122 1K2 2K2 4K2

SPX 0.4 1.6 6.3 25.2 101.1
Blunt Fin 0.4 1.8 7.2 28.8 116.6

Oxigen Post 0.7 3.0 12.1 48.4 195.0
Delta Wing 0.6 2.3 9.2 36.8 149.5

Fighter 0.7 2.2 8.0 31.2 125.0
F117 0.2 0.7 3.0 13.1 63.0
Torso 0.4 1.8 7.3 29.5 119.0

Table III
EXECUTION TIMES (IN SECONDS) FOR DIFFERENT IMAGE SIZES.

B. Discussion

The execution time and speedup gains obtained are still
modest when compared to the potential of the architec-
ture to accelerate graphics applications. The impressive
gains obtained by the raycasting implementation for regular
datasets in the Cell BE proposed by Kim and Jaja in [26],
however, cannot be reproduced for irregular datasets. Their
implementation obtained huge accelerations with two special
optimizations, approximation and refining, that removed
memory latency overheads. These optimizations can only
be accomplished when the geometry of the data is fixed.
Furthermore, regular data does not require access to the
data connectivity, reducing DMA transfers. The raycasting
of irregular grids, on the other hand, is more challenging,
since during ray intersection computation, the connectivity

information has to be constantly searched. Making the
memory latency overhead a great obstacle for performance.

Nevertheless, this is a preliminary version of a irregular
grid raycasting implementation in the Cell BE. The three-
level memory architecture, which decouples main memory
accesses from computation and is explicitly managed by
the software, increases the burden of programming, but,
the small local store of the SPE did not pose a practi-
cal limitation. A thoughtful implementation would explore
some benefits of this memory architecture, like long block
transfers that can achieve higher bandwidth than individual
cache-line transfers, and overlap of communication and
computation scheduled by software. Our approach opens
the door for future optimizations in the DMA transfer, by
exploring prefetching of data from SPE and the reuse of the
face data in the local storage.

Despite performance issues, the data format of the SPEs
imposes another obstacle for graphics programming. Al-
though, SPEs are fully IEEE-754 double precision compli-
ant, for single precision data, the results are not fully IEEE-
754 compliant (different overflow and underflow behavior,
and support only for truncation rounding mode).

VIII. CONCLUSIONS

In this paper, we proposed a new implementation of the
VF-Ray raycasting algorithm for irregular data that exploits
the highly parallel architecture of the Cell BE processor.

As the Cell BE processor imposes a different program-
ming model, our approach concentrates on reducing memory
latency by efficiently transferring data to the SPEs, and
on exploring the SIMD facilities of the cores. Our algo-
rithm distributes ray computations to the SPEs driven by
visible faces, and vectorizes the lighting integral operations
inside each SPE. Our experimental results show that we
can achieve good speedups on the PS3. In conclusion, to
unveil the Cell BE full performance, careful programming
is required. Nevertheless, under the proper implementation,
Cell BE processor demonstrates good potential for imple-
menting high-performance rendering.

For future work, we are working on optimizing our
approach, and on a parallel implementation that explores
a cluster of PS3.

ACKNOWLEDGMENTS

We would like to thank Prof. Thadeu Penna and the Com-
plex System Group of the Institute of Physics at Fluminense
Federal University for providing us full access to the PS3
used in our experiments.

REFERENCES

[1] R. Espinha and W. Celes, “High-quality hardware-based ray-
casting volume rendering using partial pre-integration,” in
SIBGRAPI ’05: Brazilian Symp. on Computer Graphics and
Image Processing, 2005, pp. 273–281.

99

[2] R. Marroquim, A. Maximo, R. Farias, and C. Esperança,
“Volume and Isosurface Rendering with GPU-Accelerated
Cell Projection,” Comp. Graphics Forum, vol. 27, pp. 24–35,
2008.

[3] A. Maximo, S. Ribeiro, C. Bentes, A. Oliveira, and R. Farias,
“Memory efficient gpu-based ray casting for unstructured
volume rendering,” in IEEE/EG Int. Symp. Volume and Point-
Based Graph., 2008, pp. 55–62.

[4] C. Muller, M. Strengert, and T. Erl, “Optimized volume
raycasting for graphics-hardware-based cluster systems,” in
Eurographics Symposium on Parallel Graphics and Visual-
ization, 2006, pp. 59–66.

[5] J. K. Lee and T. S. Newman, “Acceleration of opacity
correction mechanisms for over-sampled volume ray casting,”
in EGPGV ’08: Symposium on Parallel Graphics and Visu-
alization, 2008, pp. 22–30.

[6] S. Marchesin, C. Mongenet, and J. Dischler, “Dynamic load
balancing for parallel volume rendering,” in Eurographics
Symp. on Parallel Graphics and Visualization, 2006.

[7] R. Samanta, T. Funkhouser, K. Li, and J. P. Singh, “Hybrid
sort-first and sort-last parallel rendering with a cluster of
PCs,” in Proc. of the SIGGRAPH/Eurographics Workshop on
Graphics Hardware, 2000.

[8] H. Yu, C. Wang, and K.-L. Ma, “Parallel volume rendering
using 2-3 swap image compositing for an arbitrary number
of processors,” in Proceedings of Proceedings of IEEE/ACM
Supercomputing 2008 Conference, November 2008.

[9] J. A. Kahle, M. N. Day, H. P. Hofstee, C. R. Johns, T. R.
Maeurer, and D. Shippy, “Introduction to the cell multipro-
cessor,” IBM J. Res. Dev., vol. 49, no. 4/5, pp. 589–604, 2005.

[10] “Top500 site. http://www.top500.org.” [Online].
Available: http://www.top500.org

[11] B. Lambronici, C. Bentes, L. Drummond, and R. Farias,
“Dynamic screen division for load balancing the raycasting
of irregular data,” in Proceedings of the IEEE Cluster, 2009.

[12] F. Abraham, W. Celes, R. Cerqueira, and J. Campos, “A
load-balancing strategy for sort-first distributed rendering,” in
17th Brazilian Symposium on Computer Graphics and Image
Processing, 2004, pp. 292–299.

[13] C. Mueller, “Hierarchical graphics databases in sort-first,” in
PRS ’97: Proceedings of the IEEE symposium on Parallel
rendering, 1997, pp. 49–57.

[14] M. Roth, P. Rieb, and D. Reiners, “Load balancing on cluster-
based multi projector display systems,” in 14th International
Conference in Central Europe on Computer Graphics, Visu-
alization and Computer Vision, 2006, pp. 55–62.

[15] F. F. Bernardon, C. A. Pagot, J. L. D. Comba, and C. T.
Silva, “GPU-based Tiled Ray Casting using Depth Peeling,”
Journal of Graphics Tools, vol. 11.3, pp. 23–29, 2006.

[16] N. Fout and K.-L. Ma, “Transform coding for hardware-
accelerated volume rendering,” IEEE Transactions on Visu-
alization and Computer Graphics, vol. 13, no. 6, November
2007.

[17] S. Marchesin, C. Mongenet, and J.-M. Dischler, “Oumulti-
gpu sort-last volume visualization,” in EGPGV ’08: Symp.
on Parallel Graphics and Visualization, 2008, pp. 1–8.

[18] M. Meibner, S. Grimm, W. Straber, J. Packer, and D. La-
timer, “Parallel volume rendering on a single-chip simd
architecture,” in PVG 01: Symp. on Parallel and Large-Data
Visualization and Graphics, 2001, pp. 107–113.

[19] A. Adinetz, B. Barladian, V. Galaktionov, L. Shapiro, and
A. Voloboy, “Abstract physically accurate rendering with co-
herent ray tracing,” in International Conference on Computer
Graphics and Vision, GraphiCon, 2008.

[20] I. Wald, P. Slusallek, C. Benthin, and M. Wagner, “Interactive
rendering with coherent ray tracing,” Computer Graphics
Forum, vol. 20, no. 3, 2001.

[21] S. Sakamoto, H. Nishiyama, H. Satoh, S. Shimizu, T. Sanuki,
K. Kamijoh, A. Watanabe, and A. Asara, “An implementation
of the feldkamp algorithm for medical imaging on cell,” in
IBM White Paper, October 2005.

[22] A. C. Chow, G. C. Fossum, and D. A. Brokenshire, A
Programming Example: Large FFT on the Cell Broadband
Engine, IBM, May 2005.

[23] C. Benthin, I. Wald, M. Scherbaum, and H. Friedrich, “Ray
tracing on the cell processor,” in Proceedings of the 2006
IEEE Symposium on Interactive Ray Tracing, 2006.

[24] K. O’Conor, C. O’Sullivan, and S. Collins, “Isosurface ex-
traction on the cell processor,” in Seventh Irish Workshop on
Computer Graphics, 2006, pp. 57–64.

[25] B. Minor, G. Fossum, and V. To, Terrain Rendering Engine
(TRE): Cell Broadband Engine Optimized Real-time Ray-
caster, IBM, May 2005.

[26] J. Kim and J. Jaja, “Streaming model based volume ray
casting implementation for cell broadband engine,” Scientific
Programming, vol. 17, no. 1-2, pp. 173–184, 2009.

[27] IBM SDK for Multicore Acceleration for Fedora 9, IBM,
2008.

[28] S. Ribeiro, A. Maximo, C. Bentes, A. Oliveira, and R. Farias,
“Memory-aware and efficient ray-casting algorithm,” in SIB-
GRAPI ’07: Brazilian Symp. on Computer Graphics and
Image Processing, 2007, pp. 147–154.

[29] I. Systems and T. Group, Cell BE Programming Handbook
Including PowerXCell 8i, 2008.

100

