
Unleashing the Power of the Playstation 3 to Boost Graphics Programming

André Maximo Ricardo Farias
System Engineering and Computer Science Program

COPPE, Federal University of Rio de Janeiro
Cidade Universitária, Centro de Tecnologia, Bl. H

Rio de Janeiro, RJ, Brazil, 21945-970
Email: andmax@cos.ufrj.br, rfarias@cos.ufrj.br

Guilherme Cox Cristiana Bentes
Department of System Engineering
State University of Rio de Janeiro

Rua São Francisco Xavier, 524, Bl. D,
Rio de Janeiro, RJ, Brazil, 20550-900

Email: cris@eng.uerj.br, cox@eng.uerj.br

Abstract—This tutorial is intended for programmers who
are interested in boosting their graphics application using a
different architectural paradigm: the Cell Broadband Engine
(Cell BE). Our main idea is to focus on performance issues
that can be efficiently handled by the multicore and vector
facilities of the Cell BE. We aim to offer to programmers
an alternative way for high-performance graphics rather than
the use of Graphics Processing Units (GPUs). The Cell BE
processor is the first implementation of a chip multiprocessor
with a significant number of general purpose programmable
cores. It is a heterogeneous multicore chip capable of massive
floating point processing optimized for computation-intensive
workloads that opens up the possibility of implementing highly
parallel graphics application on a single chip. Our goal in this
tutorial is to introduce the Cell BE Architecture, show the main
differences in its programming model, describe its development
environment, and give some step-by-step examples of Cell BE
programs. We also introduce the usage of a Playstation 3 (PS3)
as a high-performance Cell platform.

Keywords-Cell Broadband Engine; Multicore Architecture;
Parallel Programming.

I. INTRODUCTION

Computer Graphics techniques are applied on several
fields of knowledge to generate images from numerical data
helping scientists on their analysis. The data can come from
a variety of sources like simulations, experiments and data
acquisition, among others, and as their sizes grow toward
Tera scale and beyond, computer graphics researchers are
faced with a huge challenge: performance. An efficient
graphics program requires a fine-tuned implementation,
which involves thorough understanding of the computer
language used, as well as about the aimed architecture.

The field of computer architecture, however, has never
been more dynamic. Conventional processors, in which per-
formance gains are obtained by increasing clock frequency,
are being replaced by power-efficient multicore processors
and Graphics Processing Units (GPUs). The idea of these
new architectures is to take advantage of chip die area,
traditionally devoted to super scalar out-of-order scheduling
and issue logic of large on-chip centralized caches, in favor
to implement vector execution units that operates in a SIMD
(Single Instruction Multiple Data) fashion, large register
sets, and large memory units distributed among different

levels of hierarchy. An exciting example of this technology
trend is the Cell Broadband Engine (Cell BE) architecture
which offers massive SIMD processing power on multiple
computational units interconnected via a high bandwidth
internal bus.

The Cell BE is a breakthrough microprocessor with
unique capabilities for high performance computation on
graphics, imaging and visualization, and for a wide scope of
data parallel applications. It has a heterogeneous multicore
architecture that was developed in conjunction by IBM,
Sony, and Toshiba [1]. The architecture is composed of
one PowerPC processor and eight synergistic processing
elements, named SPEs. It is used in the game console
Playstation 3 (PS3), and was also the basis for the fastest
supercomputer in the world, as announced in the last Top
500 (in 2009) [2]. This cluster of processors, called Road-
runner, was the first cluster to operate at the speed of over
1 Peta flops.

All the computational power of the Cell BE processor,
however, comes at the cost of a different programming
model. The new architectural features of the Cell BE present
different challenges to application and system program-
mers [3]. These challenges are: (i) use of multithreading,
(ii) code vectorization, (iii) and management of a different
memory model. In the memory model provided by the
Cell BE processor, there is no cache management hardware
to move code and data to and from main memory, i.e., the
application must explicitly manage the memory hierarchy.
In other words, the overall performance of the application
strongly depends on the effective usage of the Cell BE
hardware which is largely left to the programmer.

Therefore, advanced programming techniques are required
to unleash the power of this new processor. They are the key
to attaining the high performance computation of which the
architecture is capable of. In this tutorial, we will discuss
these programming techniques. We give a brief overview
of the main Cell BE architectural features, in order to
discuss some basic concepts on Cell programming, like
vectorization, SPE parallelization and intra-chip communi-
cation. We also give an overview on how to use the PS3
as a platform for high-performance programming, detailing

Tutorials of the XXII Brazilian Symposium on Computer Graphics and Image Processing

978-0-7695-3815-0/09 $25.00 © 2009 IEEE

DOI

45

Tutorials of the XXII Brazilian Symposium on Computer Graphics and Image Processing

978-0-7695-3815-0/09 $25.00 © 2009 IEEE

DOI 10.1109/SIBGRAPI-Tutorials.2009.12

45

installation and configuration of a PS3. Finally, we will
do code walk-throughs, with guidelines on implementing
multithreading and SIMD-ized codes, and exploring local
memory communication issues.

The remainder of this survey is organized as follows. In
Section II we give an overview on the Cell BE Architecture.
In Section III we explains the differences in programming
for the Cell BE processor. In Section IV we discuss the
Cell BE development environment, while in Section V the
hardware environment setup is addressed. In Section VI we
illustrate Cell BE programming by several examples. Finally,
in Section VII we draw our conclusions.

II. THE CELL BE PROCESSOR ARCHITECTURE

The Cell BE is quite unique as a processor. Its project
starts in 2000, with the IBM, SCEI/Sony and Toshiba
Alliance being formed. In 2001 the STI Design Center was
opened in Austin, Texas, and more than four years later the
first technical disclosure was announced. The project took
about half a billion dollars and 500 people. In 2006, the
Alliance was extended for 5 more years.

The Cell BE is a heterogeneous multicore architecture
that combines a traditional PowerPC core with multiple
mini-cores, that have limited, but SIMD-optimized, set of
instructions. A single chip contains a Power Processing
Element (PPE) and eight Synergistic Processing Elements
(SPEs). The designation synergistic for this processor was
chosen carefully because there is a mutual dependence
between the PPE and the SPEs. The SPEs depend on the
PPE to run the operating system, and, in many cases, the top-
level control thread of an application. The PPE depends on
the SPEs to provide the bulk of the application performance.

Figure 1 shows the architecture of the Cell BE processor.
The PPE, SPEs, DRAM controller, and I/O controllers are
all connected via four on-chip data rings, called Element
Interconnect Bus (EIB). Following in this section, we will
explain the PPE, SPE, EIB and the differences between PPE
and SPE in more details.

A. The Power Processing Element (PPE)

The PPE is a traditional 64-bit dual-thread PowerPC, with
a Vector Multimedia Extension unit, called VMX, and two
levels of on-chip 32 KB cache L1 for instruction and another
32 KB for data, and 512 KB of L2 cache. The PPE has a
simultaneous multithreading (SMT) processor – PowerPC
Processing Unit (PPU) – that provides two independent ex-
ecution units to the software layer. In practice, the execution
resources are shared, but each thread has its own copy of
the architectural state, such as general-purpose registers.

Despite the quite high clock frequency of the PPE, 3.2
GHz, its main purpose is to serve as a controller and
supervisor of the other cores on the chip.

B. The Synergistic Processing Element (SPE)

The SPEs are the primary computing engines of the Cell
processor. Each SPE is a special purpose RISC processor
with 128-bit SIMD capability that runs additional Cell-
specific set of instructions. It consists of a processing core
called the Synergistic Processing Unit (SPU), a Memory
Flow Controller (MFC), and a 256 KB Local Store memory
area. The local storage is used to store both code and data
being processed by the SPE, but it is not a cache. The
SPEs cannot access main memory directly, so all the code
and data being processed by the SPE must fit in this local
memory. Any data needed by the SPE, that is stored in the
main memory, must be loaded explicitly by software into the
local storage, through a DMA operation. Data transferred
between local storage and main memory must be 128-bit
aligned. The size of each DMA transfer can be at most 16
KB. Once the data is in the local memory, the SPU can
use it by explicitly loading it into one of its 128 general-
purpose registers, each 128 bits wide. The SPU instruction
set is different from the PPE instruction set and consists of
128-bit SIMD instructions. Two SIMD instructions can be
executed per clock cycle in the SPE.

C. The Element Interconnection Bus (EIB)

The EIB can transmit 96 bytes per cycle, for a band-
width of 204.8 Gigabytes/second, allowing more than 100
outstanding DMA requests. The EIB is build of four unidi-
rectional rings, two in each direction.

D. PPE × SPE

The PPE is quicker at task switching. The SPEs are faster
at compute-intensive tasks. Typically, the operating system
runs on the PPE, while user-mode threads are executed on
the SPEs. A significant difference between the PPE and
SPEs lies on how they access memory:

• The SPEs instruction-fetches, and load and store in-
structions access the private Local Store (LS), rather
than the main storage. The accesses to the main storage
are done asynchronously by the MFC with explicit
direct memory access (DMA) commands. This 3-level
organization of storage (register file, local store, main
storage), with asynchronous DMA transfers, helps hid-
ing memory latency by overlapping computation and
data transfers;

• The PPE accesses main storage directly, making use
of L1 and L2 caches, with load and store instructions.
The PPE can access each SPE’s Local Store as well,
working as a system manager in both fronts: memory
and computational tasks.

Understanding of the programming model differences
between PPE and SPEs is crucial to take advantage of this
new architecture. It is important to remember that the Cell
BE architecture is only powerful if properly tuned.

4646

SPE

SPU

Storage
Local

MFC

SPE

SPU

Storage
Local

MFC

SPE

SPU

Storage
Local

MFC

SPE

SPU

Storage
Local

MFC

SPU

Storage
Local

MFC

SPE

SPU

Storage
Local

MFC

SPE

SPU

Storage
Local

MFC

SPU

Storage
Local

MFC

SPE SPE

Element Interconnect Bus (EIB)

Memory
Interface

PPE

Interface
Bus

L1

L2

PPU

Figure 1. Architecture of the Cell BE processor.

III. PROGRAMMING THE CELL BE PROCESSOR

The Cell BE processor presents to the programmer a
different programming model. The application performance
depends on the effective use of the special features of the
Cell BE processor. We emphasize here the aspects that
distinguish the Cell BE programming from the programming
of conventional processors.

The Cell BE processor can be programmed using standard
C/C++ language, relying on libraries deployed by IBM
Software Development Kit (SDK) [4]. The user applica-
tion have to handle communication, synchronization, and
SIMD computation. An interesting point is that an existing
application would run on the Cell processor by a simple
recompilation of the code using only the PPE core, with
no effort, but also without advantages from a performance
point-of-view.

There are several key differences in coding for the Cell
processor compared to traditional multicore CPUs:

1) The power of the SPEs comes from SIMD vector
operations. The SPEs are not optimized to run scalar
code and handling unaligned data. High performance
computation can only be achieved if the data is orga-
nized in a way that is suitable for SIMD calculations.

2) SPEs have no cache memory. The DMA engine is
exposed. The explicit memory access programming
poses an extra work when compared to normal cache-
based memory hierarchy. All the code and variables
must be allocated in the local store. Larger data struc-
tures in main memory can be accessed, via explicit
DMA transfers. Furthermore, the DMA calls in the

code have to be designed to use double buffering or
similar tricks to avoid stalling due to latency.

3) SPEs lack branch prediction hardware. This feature
allowed the engineers to pack more computation cores
into the chip. However, a branch costs around 20
cycles, which implies that they should be avoided in
performance-aware codes.

Nevertheless, the PPE and the SPE are not binary compat-
ible. Summing up, the programming model is an important
aspect which distinguishes the Cell processor from other
multicore processors.

A. Exploring SIMD Facilities

SIMD processing exploits data-level parallelism, which
means that the operations on all elements of vectors can be
performed at the same time. That is, a single instruction can
be applied to multiple data elements in parallel, as illustrated
in Figure 2.

+ + +

A[0] A[3]A[2]A[1]

+

B[2]B[1]B[0]

C

B

A

add C, A, B

C[2]

B[3]

C[0] C[1] C[3]

Figure 2. Four parallel add operations in each element of two vectors.

4747

There is support for SIMD operations on both PPE and
SPEs. In the PPE, they are supported by the Vector/SIMD
Multimedia Extension instruction set. In the SPEs, on the
other hand, they are supported by the SPU Instruction Set
Architecture. Nevertheless, the high-level functions provid-
ing access to these instructions are quite similar, for instance,
the vector add function in the PPE is named vec_add,
while in the SPE is spu_add. The process of preparing a
program to run on a vector processor is called vectorization
or SIMD-ization.

The SPEs represent the power behind the Cell BE pro-
cessor, and they are inherently vector processors. They do
not implement efficiently scalar (non-vector) operations.

B. SPE Parallelization

Programs running on the Cell BE typically partition the
work among the eight available SPE, as each SPE is assigned
with a different task and data to work on. From the pro-
gramming point-of-view, managing the work among SPEs is
similar to working with threads. The SDK contains a library,
called libspe library (SPE runtime management library),
that assists in managing the code running on the SPE and
communicate with this code during execution. This library
provides standardized low-level application programming
interface (API) that enables applications to access the SPEs
and run program threads on them.

It is not recommended, however, that the application allo-
cates more SPE threads than the number of SPEs available.
SPE context switching is expensive, since it requires to store
most of the 256 KB of the local store in memory and reload
it with the code and data of the new thread. That is why the
operating system is not suitable to run on the SPE.

A PPE module starts an SPE module by creating a
thread on the SPE, using the spe_context_create,
spe_program_load, and spe_context_run library
calls. The spe_context_create call creates a context
for the SPE thread which contains the persistent informa-
tion about a logical SPE. This information should not be
accessed directly by the application. Before being able to
run an SPE context, an SPE program has to be loaded
into the context using the spe_program_load call. An
SPE context is executed on a physical SPE by calling
the spe_context_run function. This function causes
the current PPE thread to transition to a SPE thread by
passing its execution control from the PPE to the SPE whose
context is scheduled to run on. Since the PPE only resumes
execution when the SPE stops, separated threads must be
created on the PPE for each SPE in order to achieve multiple
threads of execution.

A thread can poll or sleep, waiting for SPE threads, using
the spe_get_even or spe_wait calls. SPE Runtime
Management library document [5], [6] contains a detailed
description of the API for managing the SPE threads.

C. DMA Transfers

The Cell BE processor has a unique memory architecture
and understanding this architecture is one of the key issues
for Cell programming. A SPE program references its own
LS using a Local Store Address (LSA). The LS of each
SPE is also assigned a Real Address (RA) range within the
system’s memory map. This allows privileged software to
map LS areas into the effective address (EA) space, where
the PPE, other SPEs, and other devices that generate EAs
can access the LS.

Memory Flow Controller (MFC) is the hardware compo-
nent that implements most of the Cell BE’s inter-processor
communication mechanism including the most significant
means to initiate data transfer – DMA data transfers. While
located in each of the SPEs, the MFCs interfaces may be
accessed by both program running on a SPE, or a program
running on the PPE.

The MFC supports naturally aligned transfer sizes of 1,
2, 4, or 8 bytes, and multiplication of 16-bytes, with a
maximum transfer size of 16 KB. Peak performance can
be achieved for transfers when both the EA and LSA are
128-byte aligned and the size of the transfer is a multiple
of 128 bytes.

Software running on a SPE may access the MFC facilities
through the channel interface, while software running on a
PPE may access the MFC facilities through the Memory-
Mapped I/O (MMIO) interface. MFC functions are a set
of convenient functions, each one performs a single DMA
command. The basic operations for requesting and send-
ing data from/to the main memory are mfc_get and
mfc_put, respectively. These functions are non-blocking,
so the software will continue its execution after issuing those
commands. These functions will block only if the command
queue is full.

After DMA command was initiated, the software may
wait for the completion of a DMA transaction. The three
main functions for this end are mfc_write_tag_mask,
mfc_read_tag_status_any, and mfc_read_tag
_status_all. The function mfc_write_tag_mask
writes a tag mask which determines to which tag
IDs a completion notification is needed. The function
mfc_read_tag_status_any waits until any of the
specified tagged DMA commands is completed, and the
function mfc_read_tag_status_all waits until all of
the specified tagged DMA commands are completed. MFC
also supports a set of synchronization and atomic commands
that can be used to control the order in which DMA storage
accesses are performed.

For a more detailed description see Programming Support
for MFC Input and Output chapter in C/C++ Language
Extensions for Cell BE Architecture documentation [5], [6].

4848

D. Efficient DMA Transfer and Computation Overlapping

The DMA asynchronous data transfers avoids stalls in
the SPE, by allowing the overlap of DMA transfers and
computation. One usual parallel programming technique that
can be used to explore this overlapping is a well-know
technique in computer graphics called double buffering [7],
illustrated in Figure 3. A non-overlapping sequential data
transfer forces the SPE to wait for the data before it can be
computed (see Section VI for examples).

The double buffering technique uses two buffers, B0 and
B1, in the following way: while the SPE processes the
current data in B0, an asynchronous data transfer is in
course, generating the next data for B1. In the ideal case,
both the transfer and the computation take the exact same
amount of time, as shown in the example of Figure 3.
Therefore, all the data transfers (except for the first) are
hidden behind computation, with no stall in the SPE.

Serial Transfer−Computation

Overlapped Transfer−Computation

t

B0 B0
B1 B1
B0 B0

B1
Computation

DMA transfer

Figure 3. Double buffering technique example.

E. Branch Elimination

The SPE architecture does not include dynamic branch
prediction. So, as branches are relatively expensive in the
Cell BE processor, sometimes it is important to remove
performance-critical conditions in the code. The secret to
eliminate branches is to exploit the select bits instruction.
That is, an if-then-else statement can be eliminated by
processing both clauses and using select bits to choose the
result as a conditional function. Listing 1 shows an example
of removing a branch in the SPU. The first piece of code
uses normal branching, while the second avoids the branch.

/ / Normal b r a n c h i n g code
i f (v a l u e < 0) {

temp = p0 ;
p0 = p1 ;
p1 = temp ;

}
/ / Avoid ing b r a n c h i n g
t e s t = ! spu cmpgt (va lue , z e r o) ;
temp = p0 ;
p0 = s p u s e l (temp , p1 , t e s t) ;
p1 = s p u s e l (p1 , temp , t e s t) ;

Listing 1. Eliminating branching in the SPU.

All variables are vectors. The command spu_cmpgt
sets the variable test for one if value < 0; and zero
otherwise. After that, the spu_sel function selects the first
or second parameter to return, depending on the value of
the third parameter. The first spu_sel assigns the value of
temp or p1 to p0, according to the value of test. The
second spu_sel assigns p1 or temp to p1.

F. PPE Programming

Applications running on the Cell BE processor normally
have at least two source codes. One for the PPE and another
one for the SPE, since the SPEs and PPE are designed to
run different types of code. The SPE core uses a different
instruction and register set from the PPE core, so the
programs written for the PPE and SPEs must be compiled
by different compilers. Table I shows a summary of the
differences between the PPE and the SPEs.

Feature PPE SPE
SIMD Registers 32 (128 bits) 128 (128 bits)

Register files separate fixed, unified
float and vector

Load latency variable(cache) fixed
Addressability 2

64bytes 256K bytes (local)
2
64bytes (DMA)

Instruction set PowerPC optimized for
single-precision float

Single-precision IEEE 754-1985 extended range
Doubleword none for SIMD double-precision

float SIMD

Table I
PPE VERSUS SPE ARCHITECTURAL DIFFERENCES [5].

The 128-bit vector unit (VXU) operates concurrently with
the PPU’s fixed-point integer unit (FXU) and floating-point
execution unit (FPU). Like PowerPC instructions, the VXU
instructions are 4 Bytes long and word-aligned, they have
three or four 128-bit vector operands. The VXU instructions
support simultaneous execution on multiple elements that
make up the 128-bit vector operands. These instructions
have been chosen for their utility in digital signal pro-
cessing algorithms, including 3D graphics. They include
the following types: Vector Integer, Vector Floating-Point,
Vector Load and Store, Vector Permutation and Formatting,
Processor Control, and Memory Control Instructions. The
vector elements may be byte, halfword, or word.

A set of C-language extensions are available for PPE
Vector/SIMD programming [8]. These extensions include
additional vector data types and a large set of scalar and
vector commands, called intrinsics. The VMX intrinsics and
predicates use the prefix, vec_ in front of an assembly-
language or operation mnemonic. In Listing 2, we illustrate
an example of a very simple program that illustrates the ease
way in which vector instructions can be incorporated into a
PPE program.

4949

i n c l u d e <s t d i o . h>
t y p e d e f union {

i n t i V a l s [4] ;
v e c t o r s i g ne d i n t myVec ;

} vecVar ;
i n t main () {

vecVar v1 , v2 , v3 ; / / De f i n e v a r i a b l e s
/ / Load two v e c t o r s v a l u e s i n t o v1 and v2
v1 . myVec = (v e c t o r s i g ne d i n t) {2 , 2 , 2 , 2} ;
v2 . myVec = (v e c t o r s i g ne d i n t) {10 , 20 , 30 , 40} ;
/ / Add v e c t o r s u s i n g i n t r i n s i c f u n c t i o n
v3 . myVec = vec add (v1 . myVec , v2 . myVec) ;
p r i n t f (”Sum : %d , %d , %d , %d ” ,

v3 . i V a l s [0] , v3 . i V a l s [1] ,
v3 . i V a l s [2] , v3 . i V a l s [3]) ;

re turn 0 ;
}
/ / / Ou tpu t r e s u l t :
/ / / Sum : 12 , 22 , 32 , 42

Listing 2. Example of PPE’s VXU intrinsic function usage.

G. SPE Programming

The SPE supports both single-precision and double-
precision floating-point operations. Single-precision instruc-
tions are performed in a 4-way SIMD fashion, fully
pipelined, whereas double-precision instructions are partially
pipelined. The data formats for single-precision and double-
precision instructions are those defined by IEEE Standard
754, but the results calculated by single-precision instruc-
tions are not fully compliant with this standard.

The SPE’s Local Store (LS) can be regarded as a software-
controlled cache that can be filled and emptied by DMA
transfers. It holds both instructions and data. When there
is competition to access the LS, the SPU arbitrates access
to the LS according to the following priorities: (1st) DMA
reads and writes by the PPE or an I/O device; (2nd) SPU
loads and stores; and (3rd) Instruction prefetch.

For the communication with the PPE, the architecture
offers three main mechanisms:

• DMA: To transfer data between main storage and LS.
• Mailbox: To control communications between a SPE

and the PPE or other devices. Mailboxes holds 32-bit
messages. Each SPE has two mailboxes for sending
messages and one mailbox for receiving messages.

• Signal Notification: To control communications from
PPE or other devices. Signal notification (also known
as signaling) uses 32-bit registers that can be config-
ured for one-sender-to-one-receiver signaling or many-
senders-to-one-receiver signaling.

There are 204 instructions in the SPU Instruction Set
Architecture (ISA), and they are grouped into 11 classes
according to their functionality [9]. The classes are: Memory
Load and Store, Constant Formation, Integer and Logi-
cal Operations, Shift and Rotate, Compare, Branch and
Halt, Hint-for-Branch, Floating-Point, Control, SPU Chan-
nel, SPU Interrupt Facility, Synchronization and Ordering.

As SPE is specialized in operating with 128-bit vectors,
it is useful to group the data in SIMD vectors. In a 3D
application, for example, each vertex (v0, v1, v2) of a triangle
could be stored as homogeneous coordinates (x, y, z, w) in
a SIMD vector [10]. In this case, the fourth component of
each vertex is not used and for each triangle the memory
space for one vertex is wasted.

For scalar operations, the SPE uses a scheme named
preferred slot in the 128-bit vector registers, as shown in
Figure 4. Using the preferred slot scheme requires extra
operations of shifting the element to the preferred slot and
then shifting it back to its original location, which explains
why the SPEs are not suitable for scalar operations.

8 9 10 11 12 13 14 150 2 3 4 5 71 6

word

address

quadword

byte

doubleword

halfword

Figure 4. Register layout of data types and preferred slot.

A set of C-language extensions, also called intrinsics,
are available for the SPE programming as well. They pro-
vide to programmers explicit control of the SPE SIMD
instructions without directly managing registers, i.e. without
using assembly instructions. For example, the SPU compiler
provides the intrinsic function t = spu_add(a, b) to
replace the assembly instruction fa rt, ra, rb. The
intrinsic spu_add is replaced directly to the fa instruction
when the SPE code is compiled. In Listing 3, we show the
same example program illustrated for PPE programming,
coded to run on the SPE.

i n c l u d e <s t d i o . h>
t y p e d e f union {

i n t i V a l s [4] ;
v e c t o r s i g ne d i n t myVec ;

} vecVar ;
i n t main () {

vecVar v1 , v2 , v3 ; / / De f i n e v a r i a b l e s
/ / Load two v e c t o r s v a l u e s i n t o v1 and v2
v1 . myVec = (v e c t o r s i g ne d i n t) {2 , 4 , 6 , 8} ;
v2 . myVec = (v e c t o r s i g ne d i n t) {1 , 2 , 3 , 4} ;
/ / Add v e c t o r s u s i n g i n t r i n s i c f u n c t i o n
v3 . myVec = spu add (v1 . myVec , v2 . myVec) ;
p r i n t f (”Sum : %d , %d , %d , %d ” ,

v3 . i V a l s [0] , v3 . i V a l s [1] ,
v3 . i V a l s [2] , v3 . i V a l s [3]) ;

re turn 0 ;
}
/ / / Ou tpu t r e s u l t :
/ / / Sum : 3 , 6 , 9 , 12

Listing 3. Example of SPE’s SIMD intrinsic function usage.

5050

H. Basic Guidelines on Code Development

Here we summarize several basic guidelines for code
development in the Cell BE:

• Execute main code on the PPE;
• Parallelize code for the SPEs – maintain the memory

access sequential and do not use vectorization yet;
• Vectorize SPE code;
• Properly prepare your data for processing on the SPE

– data alignment;
• Include overlapping in DMA transfers;
• Avoid branches on the critical paths.

I. Implementation Tips

Besides the important programming practices presented
so far, there are some extra programming tips presented by
Brokenshire [11], that can be useful to programmers in order
to improve the performance of their Cell-based applications:

1) Offload as much work onto the SPEs as possible –
SPEs represent the computation power of the Cell BE,
so use the PPE as the control processor, to command
the SPE execution.

2) Choose a partitioning and work allocation strategy
that minimizes atomic operations and synchroniza-
tion events – This is a common practice in parallel
programming, for the Cell BE one possible strategy is
to let the SPEs algorithmically partition the work. For
example, consider an image-processing application in
which the scan lines are processed by n SPEs. Each
SPE can algorithmically compute its work partition by
dividing the scan lines to be computed by n.

3) Accommodate potential data type differences – The
PPE and SPEs may have data types with different
sizes. The PPE can be either ILP32 or LP64 (integers
are 32 bits, longs and pointers are 64 bits), while the
SPE is always ILP32. Therefore, 64-bit applications
should be careful when dealing with data structures to
be shared mong the PPE and the SPEs.

4) Exploit multithreading on the PPE – The PPE
is two-way multithreaded in that two threads of ar-
chitectural state are maintained. So, multithreading
is strongly encouraged when the threads experience
significant L1 and L2 cache misses, or the threads code
have dependencies in the floating-point operations.

5) Design data structures for efficient access – To
achieve efficient SPE data accesses, programmers
should consider data alignment, access patterns, and
location.

6) Initiate DMAs from the SPE – Instead of the PPE
pushing data to the SPE, let the SPE pull the data
using MFC to initiate the DMAs. This is done to avoid
bottlenecks in the PPE, and because the number of
cycles to initiate a transfer from the SPE is smaller
than the number of cycles to initiate the same transfer
from the PPE.

7) Stay on-chip – If your application allows, try to
organize it in such a way to use as much of the LS as
possible, and to share data with others SPE, avoiding
communication with the global memory.

8) Avoid external scalars on the SPE – Dealing with
scalars requires several dependent instructions, once
they are usually rotated to the preferred vector ele-
ment.

9) Unroll and pipeline loops – It should be removed
all the loops in which the number of iterations are
know to be constant. Possessing a large register file,
the SPEs are able to unroll loops of considerable size.

10) Avoid integer multiplies – It must be avoided the
execution of 32-bit integer multiplication, since the
SPE contains only a 16x16 bit multiplier.

11) Consider computing versus using pre-computed re-
sults – A common strategy many programmers use to
improve application performance, called tables of pre-
computed values, are not efficient on SPE programs,
since it does not SIMD-ize well and consume valuable
LS space. If possible, it is preferable to compute those
values again rather than reading from memory.

12) Design for limited local store – The SPE local store is
limited to 256 KB, available for program instructions,
function stack, local data structures and DMA buffers.

IV. DEVELOPMENT ENVIRONMENT

To enable the programmer to take advantage of the
Cell BE Architecture, IBM has deployed a Software De-
velopment Kit (SDK) [4] that provides libraries, tools, and
resources to develop and tune applications for the technol-
ogy. It includes not only a set of development tools, but
also a simulated environment capable of running the latest
Linux kernel with Cell BE architecture extensions and run-
time support. Among the many components available in the
SDK [5], [6], we highlight:

• GNU extended tools including C/C++ compilers,
(based on gcc), linkers, debuggers (based on gdb),
assemblers and binary utilities for both processor units
on the PPE and SPE;

• IBM specialized compilers, namely xlc for C/C++ and
xfl for Fortran, for both PPU and SPU;

• Standardized SIMD math libraries for the PPU’s Vec-
tor/SIMD Multimedia Extension and the SPU Instruc-
tion Set Architecture;

• A set of analyzing and performance measure tools, such
as oprofile, CellPerfCount, FDPR-Pro, CodeAnalyzer
and spu timing;

• SPE Runtime Management Library providing a stan-
dardized, low-level application programming interface
for special accesses to the SPEs;

• An Integrated Development Environment (IDE) for
Eclipse, an open development platform;

5151

• The IBM Full-System Simulator, a software application
that emulates the behavior of a full system that contains
a Cell BE processor;

• Source codes containing programming examples, sam-
ple libraries, benchmarks and demos.

V. ENVIRONMENT SETUP

In this survey, we use the Playstation 3 (PS3) as the target
architecture to develop on the Cell BE, showed in Figure 5.
In order to be able to compile and run Cell BE codes in
a PS3, we have to setup a programming environment on
the game console. The first step is to install the OtherOS
bootloader [12], which allows a Linux operating system
installation on the PS3. Currently, the IBM SDK [4] can
be only used on a Linux OS. To both bootloader and Linux
kernel work properly, the PS3 Firmware must be up-to-date
– under the PS3’s main menu select the System Update
feature. More information about PS3 system configuration
can be found in the PS3’s User Manual [13].

Installation of the Linux operating system on a PS3
system varies depending on the Linux distribution. For
this reason we restrict this instruction to the Fedora Core
distribution [14]. Fedora has been supporting PS3 hardware
since Fedora 5, while IBM SDK has been made available
for this distribution since Fedora 7.

To accomplish the first step, we need a storage media,
such as an USB flash drive with FAT file system or a
CD/DVD. The media is used to store the bootloader in a
specific path (PS3/otheros/otheros.bld). The second step is to
install the bootloader: turn on the PS3 with the storage media
containing the bootloader inserted; select Settings / System
Settings / Install Other OS under PS3’s main menu; proceed
with the boot installation. After installed, select Other OS as
the Default System under System Settings menu. The system
will start using the installed bootloader.

The final installation step is to insert a bootable Fedora
Core disc in the PS3, and install it. Once the installation
is finished, the PS3 is ready to use as a regular PC with a
Cell BE processor instead of a CPU. The only configuration
step remaining is the IBM SDK installation. At the present
time, IBM supports Fedora Core 9 developer package in-
stallation, which we have successfully tested and used in
the examples provided in Section VI.

Figure 5. Cell BE Architecture used: Playstation 3.

VI. PROGRAMMING EXAMPLES

In this section, we show several examples of complete
programs that run on the Cell BE processor and explore
both PPE and SPE programming. Our idea is to illustrate
the creation of threads, DMA transfer instructions, SIMD
commands, and the parallelism between DMA transfer and
computation with the double buffering technique.

A. Parallel Hello World

Our first example is a simple multithreaded Hello World
that uses all the available SPEs to print a Hello World. This
example shows the structures needed for thread creation, and
uses different Hello World strings for each SPE in order to
illustrate the use of the DMA transfer functions. We show the
complete PPE and SPE code in Listing 4 and 5, respectively.

i n c l u d e < s t d l i b . h>
i n c l u d e <s t d i o . h>
i n c l u d e <s t r i n g . h>
i n c l u d e <e r r n o . h>
i n c l u d e < l i b s p e 2 . h>
i n c l u d e <p t h r e a d . h>
i n c l u d e ” h e l l o . h ”

/ / Maximum number o f SPEs t o be used
/ / R e g r e t t a b l y , PS3 has on ly 6 a v a i l a b l e SPEs
d e f i n e MAX SPE THREADS 8

/ / Typedef i n s i d e h e l l o . h (used by PPE / SPE code)
t y p e d e f s t r u c t c t r l b l o c k {

/ / Address o f t h e i n p u t and t h e SPE i d
unsigned long long i n a d d r ;
unsigned i n t i d ;

} c t r l b l o c k t ;

/ / Data s t r u c t u r e used by t h e p t h r e a d f u n c t i o n
t y p e d e f s t r u c t p p u t h r e a d d a t a {

/ / SPE c o n t e x t and c o n t r o l b l o c k p o i n t e r
s p e c o n t e x t p t r t s p e c o n t e x t ;
void∗ c t r l b l o c k p t r ;

} p p u t h r e a d d a t a t ;

/ / The SPE program
e x t e r n spe program handle t h e l l o s p u ;

/ / The H e l l o World s t r i n g s
char szHe l loWor ld [MAX SPE THREADS] [1 6]

a t t r i b u t e ((a l i g n e d (1 2 8))) ;

/ / PPE p t h r e a d f u n c t i o n t h a t s t a r t s t h e SPE t h r e a d
void ∗ p p u p t h r e a d f u n c t i o n (void ∗ a rgp) {

p p u t h r e a d d a t a t ∗ t h r e a d d a t a ;
s p e c o n t e x t p t r t c t x ;
unsigned i n t e n t r y ;

t h r e a d d a t a = (p p u t h r e a d d a t a t ∗) a rgp ;
c t x = t h r e a d d a t a−>s p e c o n t e x t ;
e n t r y = SPE DEFAULT ENTRY ;

/ / S t a r t t h e SPE t h r e a d
spe contex t run (c tx , &e n t r y , 0 ,

t h r e a d d a t a−>c t r l b l o c k p t r ,
NULL, NULL) ;

/ / K i l l t h e t h r e a d when t h e SPE r e t u r n s
p t h r e a d e x i t (NULL) ;

}

5252

/ / The PPE main f u n c t i o n
i n t main (void) {

i n t i , s pus ;
s p e c o n t e x t p t r t c t x s [MAX SPE THREADS] ;
p t h r e a d t t h r e a d s [MAX SPE THREADS] ;
c t r l b l o c k t ∗ c t r l b l o c k s [MAX SPE THREADS] ;
p p u t h r e a d d a t a t p p u t h r e a d [MAX SPE THREADS] ;

/ / The H e l l o World s t r i n g s
s t r c p y (szHe l loWor ld [0] , ” Ola Mundo ! ”) ;
s t r c p y (szHe l loWor ld [1] , ” H e l l o World ! ”) ;
s t r c p y (szHe l loWor ld [2] , ” Hei Verden ! ”) ;
s t r c p y (szHe l loWor ld [3] , ” Hola Mundo ! ”) ;
s t r c p y (szHe l loWor ld [4] , ” Ciao Mondo ! ”) ;
s t r c p y (szHe l loWor ld [5] , ” H a l l o Welt ! ”) ;
s t r c p y (szHe l loWor ld [6] , ” H a l l o Wereld ! ”) ;
s t r c p y (szHe l loWor ld [7] , ” Hei Maailma ! ”) ;

/ / De te rmine t h e number o f u s a b l e SPEs
spus = s p e c p u i n f o g e t (SPE COUNT USABLE SPES ,

−1) ;

/ / C r e a t e and c o n f i g u r e each SPE t h r e a d
f o r (i = 0 ; i < spus ; i ++) {

/ / C r e a t e SPE c o n t e x t
c t x s [i] = s p e c o n t e x t c r e a t e (0 , NULL) ;

/ / Load program i n t o c o n t e x t
spe program load (c t x s [i] , &h e l l o s p u) ;

/ / A l l o c a t e c o n t r o l b l o c k wi th memory a l i g n e d
posix memalign ((void ∗∗) (& c t r l b l o c k s [i]) ,

128 , s i z e o f (c t r l b l o c k t)) ;

/ / I n i t i a l i z e t h e c o n t r o l b l o c k
c t r l b l o c k s [i]−> i n a d d r = szHe l loWor ld [i] ;
c t r l b l o c k s [i]−> i d = i ;

/ / Load p p u t h r e a d d a t a
p p u t h r e a d [i] . s p e c o n t e x t = c t x s [i] ;
p p u t h r e a d [i] . c t r l b l o c k p t r = c t r l b l o c k s [i] ;

/ / C r e a t e t h r e a d f o r each SPE c o n t e x t
p t h r e a d c r e a t e (&t h r e a d s [i] , NULL,

&p p u p t h r e a d f u n c t i o n ,
&p p u t h r e a d [i]) ;

}

/ / A l l t h e SPEs a r e r u n n i n g i n t h r e a d s ,
/ / w a i t each one of them t o f i n i s h
f o r (i = 0 ; i < spus ; i ++) {

p t h r e a d j o i n (t h r e a d s [i] , NULL) ;

/ / D e s t r o y c o n t e x t
s p e c o n t e x t d e s t r o y (c t x s [i]) ;

f r e e (c t r l b l o c k s [i]) ;
}

re turn 0 ;
}

Listing 4. PPE Hello World example.

The PPE code uses the library libspe2 and cre-
ates the SPE threads using spe_context_create,
spe_program_load, and spe_context_run. For
each SPE thread, the PPE must create its own thread that will
start the SPE thread and stay blocked until the corresponding
SPE thread finishes.

i n c l u d e <s t d i o . h>
i n c l u d e < s t d l i b . h>
i n c l u d e <spu mfc io . h>
i n c l u d e ” h e l l o . h ”

/ / A l l o c a t e 128− b i t s a l i g n e d v a r i a b l e s i n LS
char s t r [1 6] a t t r i b u t e ((a l i g n e d (1 2 8))) ;
c t r l b l o c k t c t r l b a t t r i b u t e ((a l i g n e d (1 2 8))) ;

/ / The SPE main f u n c t i o n
i n t main (unsigned long long s p e i d ,

unsigned long long argp ,
unsigned long long envp) {

unsigned i n t t a g ;
unsigned long long add r ;

/ / Rese rve MFC t a g
t a g = mfc tag reserve () ;

/ / I s s u e a DMA g e t command t o MFC t o r e t r i e v e
/ / t h e c o n t r o l b l o c k s t r u c t u r e from main memory
mfc get (&c t r l b , argp , s i z e o f (c t r l b l o c k t) ,

t ag , 0 , 0) ;

/ / Wait f o r t h e DMA t o c o m p l e t e
mfc write tag mask (1 << t a g) ;
m f c r e a d t a g s t a t u s a l l () ;

/ / S e t add r t o t h e e f f e c t i v e a d d r e s s
add r = c t r l b . i n a d d r ;

/ / DMA g e t command t o r e t r i e v e s t r i n g
mfc get (&s t r , addr , 16 , t ag , 0 , 0) ;

/ / Wait f o r t h e DMA t o c o m p l e t e
mfc write tag mask (1 << t a g) ;
m f c r e a d t a g s t a t u s a l l () ;

/ / p r i n t s t r i n g
p r i n t f (” [spe : %d] %s\n ” , c t r l b . id , s t r) ;

re turn 0 ;
}
/ / / Ou tpu t r e s u l t :
/ / / [spe : 2] Hei Verden !
/ / / [spe : 4] Ciao Mondo !
/ / / [spe : 5] H a l l o Welt !
/ / / [spe : 3] Hola Mundo !
/ / / [spe : 1] H e l l o World !
/ / / [spe : 0] Ola Mundo !

Listing 5. SPE Hello World example.

The SPE code starts by reserving an identifier tag in the
MFC for the DMA commands, i.e. each DMA command is
tagged with a 5-bit Tag Group ID. This identifier is used to
check or wait on the completion of all queued commands in
one or more tag groups. After that, a mfc_get is executed
in order to bring the ctrl_block_t structure, defined in
the shader file hello.h, from the main memory. This is
an useful structure that allows the PPE to pass information
to the SPEs. In this example, the information is the address
of the Hello World string in the main memory and the SPE
id (specified by the program).

The function mfc_read_tag_status_all makes the
SPE program stall, waiting for the arrival of the control
block. Once it arrives, the program requests the correspond-

5353

ing Hello World string via DMA, with another mfc_get
command using the address received by the control block.
Note that, this address is the effective address (EA) of the
string in main memory. After the string is received, it is
printed on the screen together with the SPE id.

B. Using DMA

In our second example, we go deeper on the DMA transfer
commands. The second program computes the sum of two
vectors, C = A + B, in parallel. Each SPE is responsible
for summing one block of A and B, generating a block of
C. To accomplish this, the program must first transfer the
blocks of A and B from main memory to the respective LS
of each SPE, and, after the sum is completed, the program
must send the blocks of C back to the main memory.

We show the complete PPE and SPE code in Listing 6
and 7, respectively.

i n c l u d e < s t d l i b . h>
i n c l u d e <s t d i o . h>
i n c l u d e <s t r i n g . h>
i n c l u d e <e r r n o . h>
i n c l u d e < l i b s p e 2 . h>
i n c l u d e <p t h r e a d . h>
i n c l u d e ” d e f s . h ”

d e f i n e MAX SPE THREADS 8

/ / Number o f e l e m e n t s i n a b l o c k
d e f i n e NE (4096∗1024)

/ / The f o l l o w i n g f o u r t y p e d e f s a r e i n s i d e
/ / d e f s . h (used by PPE / SPE code)
t y p e d e f unsigned long long i n t u l l i ;
t y p e d e f unsigned i n t u i n t ;

/ / Unsigned i n t 4D V e c t o r t y p e
t y p e d e f s t r u c t u i4 {

u i n t x , y , z , w;
} u i 4 ;

t y p e d e f s t r u c t c t r l b l o c k {
u l l i in addrA , in addrB , o u t a d d r ;
u i n t num elem , i d ;

} c t r l b l o c k t ;

t y p e d e f s t r u c t p p u t h r e a d d a t a {
s p e c o n t e x t p t r t s p e c o n t e x t ;
void∗ c t r l b l o c k p t r ;

} p p u t h r e a d d a t a t ;

e x t e r n spe program handle t s impledma spu ;

void ∗ p p u p t h r e a d f u n c t i o n (void ∗ a rgp) {
p p u t h r e a d d a t a t ∗ t h r e a d d a t a ;
s p e c o n t e x t p t r t c t x ;
u i n t e n t r y ;

t h r e a d d a t a = (p p u t h r e a d d a t a t ∗) a rgp ;
c t x = t h r e a d d a t a−>s p e c o n t e x t ;
e n t r y = SPE DEFAULT ENTRY ;

spe contex t run (c tx , &e n t r y , 0 ,
t h r e a d d a t a−>c t r l b l o c k p t r ,
NULL, NULL) ;

p t h r e a d e x i t (NULL) ;
}

/ / The PPE main f u n c t i o n
i n t main (void) {

u i n t i , spus , o f f s e t ;
s p e c o n t e x t p t r t c t x s [MAX SPE THREADS] ;
p t h r e a d t t h r e a d s [MAX SPE THREADS] ;
c t r l b l o c k t ∗ c t r l b l o c k s [MAX SPE THREADS] ;
p p u t h r e a d d a t a t p p u t h r e a d [MAX SPE THREADS] ;
u i 4 ∗bA , ∗bB , ∗bC ; / / d a t a b l o c k s

spus = s p e c p u i n f o g e t (SPE COUNT USABLE SPES ,
−1) ;

/ / C r e a t e and i n i t i a l i z e d a t a b l o c k s
posix memalign ((void ∗)&bA , 1 2 8 ,NE∗ s i z e o f (u i 4)) ;
posix memalign ((void ∗)&bB , 1 2 8 ,NE∗ s i z e o f (u i 4)) ;
posix memalign ((void ∗)&bC , 1 2 8 ,NE∗ s i z e o f (u i 4)) ;

/ / I n i t i a l i z e i n p u t d a t a b l o c k s
f o r (i = 0 ; i < NE; i ++) {

bA[i] . x = i +1; bA[i] . y = i +3;
bA[i] . z = i +6; bA[i] . w = i +9;
bB [i] . x = 2 ; bB [i] . y = 4 ;
bB [i] . z = 8 ; bB [i] . w = 1 6 ;

}

/ / I n i t i a l i z e r e s u l t d a t a b l o c k wi th z e r o e s
memset (bC , 0 , NE ∗ s i z e o f (u i 4)) ;

/ / S p l i t work a c r o s s SPEs u s i n g a d d r e s s o f f s e t
o f f s e t = NE / spus ;
f o r (i = 0 ; i < spus ; i ++) {

c t x s [i] = s p e c o n t e x t c r e a t e (0 , NULL) ;

spe program load (c t x s [i] , &simpledma spu) ;

posix memalign ((void ∗∗) (& c t r l b l o c k s [i]) ,
128 , s i z e o f (c t r l b l o c k t)) ;

c t r l b l o c k s [i]−> in addrA = &bA[i ∗ o f f s e t] ;
c t r l b l o c k s [i]−> i n addrB = &bB [i ∗ o f f s e t] ;
c t r l b l o c k s [i]−>o u t a d d r = &bC [i ∗ o f f s e t] ;
c t r l b l o c k s [i]−>num elem = o f f s e t ;
c t r l b l o c k s [i]−> i d = i ;

/ / L a s t SPE computes t h e e x t r a e l e m e n t s
i f (i == spus − 1)

c t r l b l o c k s [i]−>num elem += NE % spus ;

p p u t h r e a d [i] . s p e c o n t e x t = c t x s [i] ;
p p u t h r e a d [i] . c t r l b l o c k p t r = c t r l b l o c k s [i] ;

p t h r e a d c r e a t e (&t h r e a d s [i] , NULL,
&p p u p t h r e a d f u n c t i o n ,
&p p u t h r e a d [i]) ;

}

f o r (i = 0 ; i < spus ; i ++) {
p t h r e a d j o i n (t h r e a d s [i] , NULL) ;
s p e c o n t e x t d e s t r o y (c t x s [i]) ;
f r e e (c t r l b l o c k s [i]) ;

}

p r i n t f (” F i r s t v e c t o r : bC [0] = %d , %d , %d , %d ” ,
bC [0] . x , bC [0] . y , bC [0] . z , bC [0] . w) ;

re turn 0 ;
}
/ / / Ou tpu t r e s u l t :
/ / / F i r s t v e c t o r : bC [0] = 3 , 7 , 14 , 25

Listing 6. PPE DMA example.

5454

Each vector element is a struct called ui4Data, contain-
ing four integers: x, y, z, w. The PPE code starts each SPE
thread in the same way done in the Hello World example.
The PPE creates its own threads that stays blocked until the
corresponding SPE thread finishes. The only difference in
this code is that the control block structure is initialized, for
each SPE thread, with the address of the respective block of
the vectors A, B, and C.

i n c l u d e <s t d i o . h>
i n c l u d e < s t d l i b . h>
i n c l u d e <spu mfc io . h>
i n c l u d e ” d e f s . h ”

/ / Number o f e l e m e n t s i n each SPE i t e r a t i o n
d e f i n e CHUNK (5 1 2)

/ / A l l o c a t e 128− b i t s a l i g n e d l o c a l b u f f e r s
u i 4 lA [CHUNK] a t t r i b u t e ((a l i g n e d (1 2 8))) ;
u i 4 lB [CHUNK] a t t r i b u t e ((a l i g n e d (1 2 8))) ;
u i 4 lC [CHUNK] a t t r i b u t e ((a l i g n e d (1 2 8))) ;

c t r l b l o c k t c t r l b a t t r i b u t e ((a l i g n e d (1 2 8))) ;

/ / The SPE main f u n c t i o n
i n t main (u l l i s p e i d a t t r i b u t e ((unused)) ,

u l l i argp ,
u l l i envp a t t r i b u t e ((unused))) {

u i n t t ag , o f f s e t , i , j , num chunks , ne chunk ;
u l l i in addrA , in addrB , o u t a d d r ;

t a g = mfc tag reserve () ;

mfc get (&c t r l b , argp , s i z e o f (c t r l b l o c k t) ,
t ag , 0 , 0) ;

mfc write tag mask (1 << t a g) ;
m f c r e a d t a g s t a t u s a l l () ;

in addrA = c t r l b . in addrA ;
in addrB = c t r l b . in addrB ;
o u t a d d r = c t r l b . o u t a d d r ;

/ / Compute t h e number o f chunks
num chunks = c t r l b . num elem / CHUNK;
/ / Add 1 chunk i f t h e r e a r e e x t r a e l e m e n t s
i f (c t r l b . num elem % CHUNK)

num chunks ++;

/ / Add v e c t o r s by chunks , t h e SPE has a l i m i t e d
/ / memory s p a c e (256 KB) i n i t s LS
o f f s e t = 0 ;
f o r (i = 0 ; i < num chunks ; i ++) {

/ / Compute number o f e l e m e n t s i n t h i s chunk
i f (CHUNK > c t r l b . num elem − o f f s e t)

ne chunk = c t r l b . num elem − o f f s e t ;
e l s e

ne chunk = CHUNK;

/ / I s s u e a DMA g e t command t o r e t r i e v e
/ / b l o c k A and B from main memory
mfc get (&lA , in addrA + o f f s e t ∗ s i z e o f (u i 4) ,

ne chunk ∗ s i z e o f (u i 4) , t ag , 0 , 0) ;
mfc get (&lB , in addrB + o f f s e t ∗ s i z e o f (u i 4) ,

ne chunk ∗ s i z e o f (u i 4) , t ag , 0 , 0) ;

/ / Wait f o r t h e DMA t o c o m p l e t e
mfc write tag mask (1 << t a g) ;
m f c r e a d t a g s t a t u s a l l () ;

/ / Add e l e m e n t s i n t h i s chunk
f o r (j = 0 ; j < ne chunk ; j ++) {

lC [j] . x = lA [j] . x + lB [j] . x ;
lC [j] . y = lA [j] . y + lB [j] . y ;
lC [j] . z = lA [j] . z + lB [j] . z ;
lC [j] . w = lA [j] . w + lB [j] . w;

}

/ / I s s u e a DMA p u t command t o s t o r e b l o c k
mfc put (&lC , o u t a d d r + o f f s e t ∗ s i z e o f (u i 4) ,

ne chunk ∗ s i z e o f (u i 4) , t ag , 0 , 0) ;

/ / Wait f o r t h e DMA t o c o m p l e t e
mfc write tag mask (1 << t a g) ;
m f c r e a d t a g s t a t u s a l l () ;

o f f s e t += CHUNK;
}

re turn 0 ;
}

Listing 7. SPE DMA example.

The SPE code also starts in the same way done in
the Hello World example. First, it reserves an identifier
tag, and brings the ctrl_block_t structure from the
main memory. After that, the program establishes chunks
of vectors to be transferred from main memory. It is not
possible to bring all the data from vectors A and B from
main memory in one DMA transfer, due to the limited
capacity of the LS. For each chunk, the program requests
the data via a DMA mfc_get command, with the address
received by the control block. Once the chunk arrived, the
sum is processed and the result is put in the main memory
through a DMA mfc_put command. When all the chunks
were computed, the thread finishes.

C. Using SIMD

The third example illustrates the use of SIMD operations,
in the code presented in Section VI-B. We used the same
vector sum example, but the actual sum was SIMD-ized.

We show in Listing 8 only the code for the SPE, since
the PPE code is exactly the same as the one presented in
Section VI-B.

i n c l u d e <s t d i o . h>
i n c l u d e < s t d l i b . h>
i n c l u d e <spu mfc io . h>
i n c l u d e ” d e f s . h ”

d e f i n e CHUNK (5 1 2)

u i 4 lA [CHUNK] a t t r i b u t e ((a l i g n e d (1 2 8))) ;
u i 4 lB [CHUNK] a t t r i b u t e ((a l i g n e d (1 2 8))) ;
u i 4 lC [CHUNK] a t t r i b u t e ((a l i g n e d (1 2 8))) ;

c t r l b l o c k t c t r l b a t t r i b u t e ((a l i g n e d (1 2 8))) ;

/ / The SPE main f u n c t i o n
i n t main (u l l i s p e i d a t t r i b u t e ((unused)) ,

u l l i argp ,
u l l i envp a t t r i b u t e ((unused))) {

u i n t t ag , o f f s e t , i , j , num chunks , ne chunk ;
u l l i in addrA , in addrB , o u t a d d r ;

5555

t a g = mfc tag reserve () ;

mfc get (&c t r l b , argp , s i z e o f (c t r l b l o c k t) ,
t ag , 0 , 0) ;

mfc write tag mask (1 << t a g) ;
m f c r e a d t a g s t a t u s a l l () ;

/ / I n p u t / o u t p u t a d d r e s s e s f o r t h e c u r r e n t chunk
in addrA = c t r l b . in addrA ;
in addrB = c t r l b . in addrB ;
o u t a d d r = c t r l b . o u t a d d r ;

num chunks = c t r l b . num elem / CHUNK;
i f (c t r l b . num elem % CHUNK)

num chunks ++;

o f f s e t = 0 ;
f o r (i = 0 ; i < num chunks ; i ++) {

i f (CHUNK > c t r l b . num elem − o f f s e t)
ne chunk = c t r l b . num elem − o f f s e t ;

e l s e
ne chunk = CHUNK;

mfc get (&lA , in addrA + o f f s e t ∗ s i z e o f (u i 4) ,
ne chunk ∗ s i z e o f (u i 4) , t ag , 0 , 0) ;

mfc get (&lB , in addrB + o f f s e t ∗ s i z e o f (u i 4) ,
ne chunk ∗ s i z e o f (u i 4) , t ag , 0 , 0) ;

mfc write tag mask (1 << t a g) ;
m f c r e a d t a g s t a t u s a l l () ;

/ / Add e l e m e n t s u s i n g SPE i n t r i n s i c
f o r (j = 0 ; j < ne chunk ; j ++) {

∗ ((v e c t o r u i n t ∗)&lC [j]) =
spu add (∗ ((v e c t o r u i n t ∗)&lA [j]) ,

∗ ((v e c t o r u i n t ∗)&lB [j])) ;
}

mfc put (&lC , o u t a d d r + o f f s e t ∗ s i z e o f (u i 4) ,
ne chunk ∗ s i z e o f (u i 4) , t ag , 0 , 0) ;

mfc write tag mask (1 << t a g) ;
m f c r e a d t a g s t a t u s a l l () ;

o f f s e t += CHUNK;
}

re turn 0 ;
}

Listing 8. SPE SIMD example.

The only difference for this SPE code to the one presented
for the DMA example lies on the sum of the chunks. In
this code the four scalar sum operations were replaced by
one SPE SIMD intrinsic function: spu_add. This function
allows the parallel sum of the four integers (x, y, z, w)
embedded in one vector element.

D. Double Buffering

The fourth and last example is a double buffering code.
Double buffering essentially means starting a DMA transfer
before the data is actually necessary. The data needed for the
next computing step is requested while the current step is
computed, as described in Figure 3. This technique is used
to hide the memory latency as mentioned on Section III-C.

Double buffering is well-known for its use in graphical
systems where, by keeping the next frame to display in
memory, it is possible to reduce flickering.

The ability to overlap memory transfers with computation
can provide several advantages over mainstream cache-based
architectures [15]. These advantages, however, can only be
effective if there is a balance between the transfer time and
the amount of computation done by the SPE. Ideally, the
SPE would never be stalled waiting for data. The example
shown here, however, is just a simple framework on double
buffering. It is not intended to balance the amount of SPE
computation with the memory transfer time.

The double buffering program is also grounded on the
vector sum code employed in the last two examples. We used
the same vector structures, but the DMA transfers of vector
chunks are done in a double buffering fashion. We show in
Listing 9 only the code for the SPE, since the PPE code is
exactly the same as the one presented in Section VI-B.

i n c l u d e <s t d i o . h>
i n c l u d e < s t d l i b . h>
i n c l u d e <spu mfc io . h>
i n c l u d e ” d e f s . h ”

d e f i n e CHUNK (5 1 2)

/ / Now we need two l o c a l b u f f e r s
u i 4 lA [2] [CHUNK] a t t r i b u t e ((a l i g n e d (1 2 8))) ;
u i 4 lB [2] [CHUNK] a t t r i b u t e ((a l i g n e d (1 2 8))) ;
u i 4 lC [2] [CHUNK] a t t r i b u t e ((a l i g n e d (1 2 8))) ;

c t r l b l o c k t c t r l b a t t r i b u t e ((a l i g n e d (1 2 8))) ;

i n t main (u l l i s p e i d a t t r i b u t e ((unused)) ,
u l l i argp ,
u l l i envp a t t r i b u t e ((unused))) {

u i n t t a g s [2] , i , j , num chunks , ne chunk [2] ;
u l l i in addrA , in addrB , o u t a d d r ;
/ / C u r r e n t and n e x t chunk i d s
u i n t c u r r , n e x t ;

/ / Rese rve two MFC t a g s
t a g s [0] = mfc tag reserve () ;
t a g s [1] = mfc tag reserve () ;

mfc get (&c t r l b , argp , s i z e o f (c t r l b l o c k t) ,
t a g s [0] , 0 , 0) ;

mfc write tag mask (1 << t a g s [0]) ;
m f c r e a d t a g s t a t u s a l l () ;

in addrA = c t r l b . in addrA ;
in addrB = c t r l b . in addrB ;
o u t a d d r = c t r l b . o u t a d d r ;

num chunks = c t r l b . num elem / CHUNK;
i f (c t r l b . num elem % CHUNK)

num chunks ++;

/ / Compute t h e number o f e l e m e n t s f o r
/ / t h e f i r s t chunk
c u r r = 0 ;
i f (CHUNK > c t r l b . num elem)

ne chunk [c u r r] = c t r l b . num elem ;
e l s e

ne chunk [c u r r] = CHUNK;

5656

/ / I s s u e a DMA g e t command t o r e t r i e v e f i r s t
/ / chunk w i t h o u t w a i t i n g (a s y n c h r o n o u s DMA)
mfc get (&lA [c u r r] , in addrA , ne chunk [c u r r]

∗ s i z e o f (u i 4) , t a g s [c u r r] , 0 , 0) ;
mfc get (&lB [c u r r] , in addrB , ne chunk [c u r r]

∗ s i z e o f (u i 4) , t a g s [c u r r] , 0 , 0) ;

/ / Update i n p u t a d d r e s s
in addrA += ne chunk [c u r r] ∗ s i z e o f (u i 4) ;
in addrB += ne chunk [c u r r] ∗ s i z e o f (u i 4) ;

f o r (i = 1 ; i < num chunks ; i ++) {
/ / Next and c u r r e n t i d can on ly be 0 or 1
n e x t = c u r r ˆ 1 ;

/ / Compute t h e number o f e l e m e n t s f o r
/ / t h e n e x t chunk
i f (CHUNK > c t r l b . num elem − i ∗CHUNK)

ne chunk [n e x t] = c t r l b . num elem − i ∗CHUNK;
e l s e

ne chunk [n e x t] = CHUNK;

/ / I s s u e a DMA g e t command t o r e t r i e v e n e x t
/ / chunk and s t o r e i t i n each l o c a l b u f f e r
mfc get (&lA [n e x t] , in addrA , ne chunk [n e x t]

∗ s i z e o f (u i 4) , t a g s [n e x t] , 0 , 0) ;
mfc get (&lB [n e x t] , in addrB , ne chunk [n e x t]

∗ s i z e o f (u i 4) , t a g s [n e x t] , 0 , 0) ;

/ / Wait c u r r e n t b u f f e r DMA command t o c o m p l e t e
mfc write tag mask (1 << t a g s [c u r r]) ;
m f c r e a d t a g s t a t u s a l l () ;

/ / Update i n p u t a d d r e s s e s
in addrA += ne chunk [n e x t] ∗ s i z e o f (u i 4) ;
in addrB += ne chunk [n e x t] ∗ s i z e o f (u i 4) ;

/ / Add c u r r e n t chunk e l e m e n t s
f o r (j = 0 ; j < ne chunk [c u r r] ; j ++) {

∗ ((v e c t o r u i n t ∗)&lC [c u r r] [j]) =
spu add (∗ ((v e c t o r u i n t ∗)&lA [c u r r] [j]) ,

∗ ((v e c t o r u i n t ∗)&lB [c u r r] [j])) ;
}

/ / I s s u e a DMA p u t command t o s t o r e c u r r e n t
/ / chunk r e a d i n g i t from l o c a l b u f f e r C
mfc put (&lC [c u r r] , ou t add r , ne chunk [c u r r]

∗ s i z e o f (u i 4) , t a g s [c u r r] , 0 , 0) ;

/ / Update t h e n e x t o u t p u t a d d r e s s
o u t a d d r += ne chunk [c u r r] ∗ s i z e o f (u i 4) ;

/ / Walk t o t h e n e x t chunk
c u r r = n e x t ;

}

/ / L a s t chunk was n o t y e t computed
/ / Wait t h e l a s t DMA g e t command
mfc write tag mask (1 << t a g s [c u r r]) ;
m f c r e a d t a g s t a t u s a l l () ;

/ / Compute l a s t sum
f o r (j = 0 ; j < ne chunk [c u r r] ; j ++) {

∗ ((v e c t o r u i n t ∗)&lC [c u r r] [j]) =
spu add (∗ ((v e c t o r u i n t ∗)&lA [c u r r] [j]) ,

∗ ((v e c t o r u i n t ∗)&lB [c u r r] [j])) ;
}

/ / I s s u e a DMA p u t command t o s t o r e l a s t chunk
mfc put (&lC [c u r r] , ou t add r , ne chunk [c u r r]

∗ s i z e o f (u i 4) , t a g s [c u r r] , 0 , 0) ;

/ / Wait f o r t h e l a s t chunk w r i t i n g
mfc write tag mask (1 << t a g s [c u r r]) ;
m f c r e a d t a g s t a t u s a l l () ;

re turn 0 ;
}

Listing 9. SPE Double Buffering example.

In this SPE code, the mfc_get for the first chunk is
started before the iterations begin. For each iteration i, the
program starts the transfer for chunk i+1 and waits for the
arrival of chunk i. After that, the elements of chunk i are
summed, using the SIMD instruction spu_add. At the end
of the iteration, a mfc_put DMA command transfers the
computed results to the main memory. When the loop ends,
the SPE program has still to compute the sum of the last
chunk and transfer it to the main memory.

VII. CONCLUSIONS

The Cell BE processor offers an innovative architectural
approach that has a radically different design than those
offered by other multicore processors. This new architecture
has a great potential for improving speed, performance, and
energy efficiency of many high-performance applications,
including graphics applications.

The most distinguishing feature of the Cell BE processor
is that the multicore design is heterogeneous and cache
hierarchies are replaced by a three level software-controlled
memory architecture, which completely decouples main
memory load/store from computation. Moreover, the archi-
tecture provides vector SIMD capabilities and a massive
register file.

Therefore, high-performance programming for the
Cell BE is challenging in many ways. Programs that run
on Cell BE require the use of multithreading, with the
orchestration of computation and memory transfers, and the
effective use of SIMD capabilities.

The inherent challenge of programming the Cell BE
is also observed in others architectures as well. The fast
evolution of GPUs and multicore CPUs frame the end
of sequential single-processor programming, in favor for
massively parallel programming models. Indications of this
future path can be noticed in the nVidia’s Compute Unified
Device Architecture – CUDA, and a recent announcement
of a new Intel’s architecture – Larrabee – converging CPU
and GPU pipelines and designing strategies.

In this survey, we addressed the difficulties of program-
ming the Cell by providing a brief introduction on the
Cell BE architecture and by unleashing the potential of this
architecture for high-performance graphics programming.
We gave an overview on the differences in the Cell program-
ming model, with some implementation tips, and provided
some complete examples for Cell starters that deals with
control of the memory architecture and taking advantage of
SIMD capabilities. We hope that this introductory survey

5757

would help making the jump on the Cell BE world slightly
less arduous.

ACKNOWLEDGMENTS

We would like to thank Prof. Thadeu Penna and the
Complex System Group of the Institute of Physics at Flu-
minense Federal University for providing us full access to
the PS3 used in our experiments. We also acknowledge
the grant of the first author provided by Brazilian agency
CNPq (National Council of Technological and Scientific
Development).

REFERENCES

[1] J. A. Kahle, M. N. Day, H. P. Hofstee, C. R. Johns, T. R.
Maeurer, and D. Shippy, “Introduction to the cell multipro-
cessor,” IBM J. Res. Dev., vol. 49, no. 4/5, pp. 589–604, 2005.

[2] “Top500 site. http://www.top500.org.” [Online].
Available: http://www.top500.org

[3] M. Scarpino, Programming the Cell Processor: For Games,
Graphics, and Computation. Prentice Hall, 2008.

[4] IBM SDK for Multicore Acceleration for Fedora 9, IBM,
2008.

[5] “IBM SDK Resources.” [Online]. Available: http://www.ibm.
com/developerworks/power/cell

[6] “Cell Documentation.” [Online]. Available: http://cell.scei.
co.jp/e download.html

[7] G. Bishop, H. Fuchs, L. McMillan, and E. J. S. Zagier,
“Frameless rendering: double buffering considered harmful,”
in SIGGRAPH ’94: Proceedings of the 21st annual conference
on Computer graphics and interactive techniques, 1994, pp.
175–176.

[8] C/C++ Language Extensions for Cell Broadband Engine
Architecture, IBM, 2008.

[9] Synergistic Processor Unit Instruction Set Architecture -
version 1.2, IBM, 2007.

[10] G. Cox, A. Maximo, C. Bentes, and R. Farias, “Irregular grid
raycasting implementation on the cell broadband engine,” in
21st International Symposium on Computer Architecture and
High Performance Computing, accepted for publication 2009.

[11] D. A. Brokenshire, Maximizing the power of the Cell Broad-
band Engine processor: 25 tips to optimal application per-
formance, IBM, Jun 2006.

[12] “Open platform for playstation 3.” [Online]. Available:
http://www.playstation.com/ps3-openplatform/manual.html

[13] “PS3’s User Manual.” [Online]. Available: http://www.us.
playstation.com/Support/Manuals/PS3

[14] “Fedora for PS3.” [Online]. Available: http://fedoraproject.
org/wiki/PlayStation

[15] S. Williams, J. Shalf, L. Oliker, S. Kamil, P. Husbands, and
K. Yelick, “The potential of the cell processor for scientific
computing,” in CF ’06: Proceedings of the 3rd conference on
Computing frontiers, 2006, pp. 9–20.

5858

