
17

Fast Power and Energy Management for Future Many-Core Systems

YANPEI LIU, University of Wisconsin Madison
GUILHERME COX, Rutgers University
QINGYUAN DENG, Facebook Inc.
STARK C. DRAPER, University of Toronto
RICARDO BIANCHINI, Microsoft Research

Future servers will incorporate many active low-power modes for each core and for the main memory sub-
system. Though these modes provide flexibility for power and/or energy management via Dynamic Voltage
and Frequency Scaling (DVFS), prior work has shown that they must be managed in a coordinated manner.
This requirement creates a combinatorial space of possible power mode configurations. As a result, it be-
comes increasingly challenging to quickly select the configuration that optimizes for both performance and
power/energy efficiency.

In this article, we propose a novel queuing model for working with the abundant active low-power modes in
many-core systems. Based on the queuing model, we derive two fast algorithms that optimize for performance
and efficiency using both CPU and memory DVFS. Our first algorithm, called FastCap, maximizes the
performance of applications under a full-system power cap, while promoting fairness across applications. Our
second algorithm, called FastEnergy, maximizes the full-system energy savings under predefined application
performance loss bounds. Both FastCap and FastEnergy operate online and efficiently, using a small set
of performance counters as input. To evaluate them, we simulate both algorithms for a many-core server
running different types of workloads. Our results show that FastCap achieves better application performance
and fairness than prior power capping techniques for the same power budget, whereas FastEnergy conserves
more energy than prior energy management techniques for the same performance constraint. FastCap and
FastEnergy together demonstrate the applicability of the queuing model for managing the abundant active
low-power modes in many-core systems.

CCS Concepts: � Computing methodologies → Modeling methodologies; � Hardware → Power and
energy; � Computer systems organization → Architectures;

Additional Key Words and Phrases: Queuing theory and optimization

ACM Reference Format:
Yanpei Liu, Guilherme Cox, Qingyuan Deng, Stark C. Draper, and Ricardo Bianchini. 2017. Fast power and
energy management for future many-core systems. ACM Trans. Model. Perform. Eval. Comput. Syst. 2, 3,
Article 17 (September 2017), 31 pages.
DOI: http://dx.doi.org/10.1145/3086504

This work was funded in part by NSF grant CCF-1319755. The work of Yanpei Liu was partially supported
by a visitor grant from DIMACS, funded by the National Science Foundation under grant numbers CCF-
1144502 and CNS-0721113.
Extension of Conference Paper. This publication is an extension of “FastCap: An Efficient and Fair Algo-
rithm for Power Capping in Many-Core Systems,” a published work of Liu et al. at IEEE ISPASS, 2016.
The additional contribution is the algorithm generalization for energy conservation. (The methodology was
previously designed exclusively for power capping in multi-core systems.) A new algorithm was developed
and its effectiveness in energy conservation is supported by theoretical analysis and numerical results.
Authors’ addresses: Y. Liu, 1415 Engineering Drive, Madison, WI 53706; G. Cox, 110 Frelinghuysen Road
Piscataway, NJ 08854-8019; Q. Deng, 1 Facebook Way, Menlo Park, CA 94025; R. Bianchini, One Microsoft
Way Redmond, WA 98052; S. Draper, 10 King’s College Road, Toronto, Ontario, M5S 3G4.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies show this notice on the first page or initial screen of a display along with the full citation. Copyrights for
components of this work owned by others than ACM must be honored. Abstracting with credit is permitted.
To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any component of this
work in other works requires prior specific permission and/or a fee. Permissions may be requested from
Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212)
869-0481, or permissions@acm.org.
c© 2017 ACM 2376-3639/2017/09-ART17 $15.00
DOI: http://dx.doi.org/10.1145/3086504

ACM Trans. Model. Perform. Eval. Comput. Syst., Vol. 2, No. 3, Article 17, Publication date: September 2017.

http://dx.doi.org/10.1145/3086504
http://dx.doi.org/10.1145/3086504

17:2 Y. Liu et al.

1. INTRODUCTION

As power and energy consumption become significant concerns for server systems,
servers have started to incorporate an increasing number of idle low-power states
(such as CPU sleep states) and active low-power modes of execution (such as CPU
DVFS). Researchers have also proposed active low-power modes for the main memory
subsystem [11, 13], for disk drives [8, 18], and for interconnects [1]. Active low-power
modes are often more desirable than idle low-power states, as they enable the compo-
nent to continue operating in a more efficient fashion, without activation delays [30].
For this reason, we focus on active low-power modes for CPUs and memory, using
DVFS.

As suggested by many prior works [13, 28, 26], active low-power modes should be
managed in a coordinated manner. A lack of coordination hampers a system’s ability to
optimize performance, power, and/or energy. For example, consider a scenario in which
our goal is to manage low-power modes to maximize the full-system energy savings
within a preselected bound on the acceptable application performance loss. Further,
suppose that the CPU cores are stalled waiting for the memory a significant fraction
of the time. In this situation, the CPU power manager might predict that lowering
voltage/frequency will improve energy efficiency while meeting the performance bound.
By effecting the requisite state change, the lower core frequency would reduce traffic
to the memory subsystem, which in turn could cause its (independent) power manager
to lower the memory frequency. After this latter frequency change, the performance of
the server as a whole may dip below the CPU power manager’s projections, potentially
violating the target performance bound. So, at its next opportunity, the CPU manager
might start increasing the core frequency, inducing a similar response from the memory
subsystem manager. Such interactions between CPU and memory frequencies can
cause performance oscillations. These unintended behaviors suggest that it is essential
to coordinate power-performance management techniques across system components
to ensure that the system is balanced for the best efficiency.

The abundance of active low-power modes provides great flexibility in performance-
aware power/energy management via DVFS. However, the need for coordinated man-
agement creates a combinatorial space of possible power mode configurations. This
problem is especially acute for servers that run many applications (each with a poten-
tially different behavior), since it is unlikely that the power mode selected for a core
running one application can be used for a core running another one. Quickly traversing
the large space of mode combinations to select a good configuration as applications
change behavior is difficult. Existing works often rely on exhaustive search [21, 28, 27]
or suboptimal heuristics [7, 13]. Clearly, suboptimal or high time complexity algorithms
are unlikely to perform well for future many-core servers.

With these observations in mind, in this article, we propose a novel queuing model for
many-core systems with many active low-power modes. Based on the queuing model,
we derive two fast algorithms that jointly operate CPU and memory DVFS: (1) FastCap,
an optimization framework and search algorithm for performance-aware full-system
power capping while promoting fairness across applications, and (2) FastEnergy, an
optimization framework and search algorithm for energy conservation within prede-
fined performance loss bounds. These algorithms efficiently select voltage/frequency
configurations that are optimal or near optimal for many-core systems. The time com-
plexity of our algorithms (linear in the number of cores) is lower than any of the prior
approaches, despite the combinatorial number of possible power mode configurations.
Furthermore, FastCap achieves better application performance and fairness than prior
power capping techniques for the same power budget, whereas FastEnergy conserves
more energy than prior energy management techniques for the same performance
constraint. Based on our results, we conclude that queueing models and linear-time

ACM Trans. Model. Perform. Eval. Comput. Syst., Vol. 2, No. 3, Article 17, Publication date: September 2017.

Fast Power and Energy Management for Future Many-Core Systems 17:3

Table I. Comparison of FastCap and FastEnergy with Existing Approaches

Objective Method Complexity Mem. DVFS
Power capping Exhaustive [21] ∼ O(FN) No
Power capping Numeric Opt. [6] ∼ O(N4) No
Power capping Heuristics [31] ∼ O(FN log N) No
Power capping FastCap O(N log M) Yes
Energy saving Exhaustive [28] ∼ O(FN) No
Energy saving Heuristics [13] O(M + FN2) Yes
Energy saving FastEnergy O(NM) Yes

N: Number of cores. F: Number of frequency levels per core. M: Number of
memory frequency levels. Both FastCap and FastEnergy scale linearly with the
number of cores.

optimization can be used to efficiently manage the combinatorial explosion of possible
power modes in future many-core servers.

The rest of the article is organized as follows. We first summarize some related works
in Section 2 and foreshadow the algorithmic complexity of our FastCap and FastEnergy
in Table I. Then, in Section 3, we introduce our novel queuing model designed for
power/energy management. Based on the queuing model, in Section 4, we introduce
FastCap and evaluation results. To study energy conservation, in Section 5, we present
the FastEnergy algorithm. Finally, we conclude in Section 6.

2. RELATED WORK

2.1. Power Management

To cap power, as in FastCap, most existing works used optimization methods and/or
control-theoretic approaches. We review some of the major works in both categories.

Optimization approaches. The authors in [35] first suggested that global power man-
agement is better than a distributed method in which each core manages its own
power. They argued that all cores receiving an equal share of the total power budget
is preferred over a dynamic power redistribution, due to the complexity of the latter
approach. The authors in [21] used exhaustive search over precomputed power and per-
formance information about all possible power mode combinations. Their algorithm’s
time and storage space complexities grow exponentially with the number of cores. The
authors in [37] developed a linear programming method to find the best DVFS settings
under power constraints. However, they assumed power is linearly dependent on the
core frequency, which is often a poor approximation. The authors in [31] developed a
greedy algorithm that starts with maximum speeds for all cores and repeatedly selects
the neighboring lower global power mode with the best �power/�per f ratio. The algo-
rithm may traverse the entire space of power mode combinations. The authors in [6]
formulated a nonlinear optimization and solved it via the interior-point method. The
method usually takes many steps to converge and its average complexity is polynomial
in the number of cores.

Control-theoretic approaches. Recently, a power monitoring and control system was
built for the entire Facebook datacenter fleet across multiple levels of power hierarchy
[40]. The authors in [33] studied power management in multicore CPUs with volt-
age islands. They proposed a two-tier feedback-based design. They assumed that the
power-frequency model (power consumption as a function of the cores’ frequencies)
is fixed for all islands, which may be inaccurate under changing workload dynamics.
The authors in [29] used a method that stabilizes the power consumption by adjust-
ing a frequency quota for all cores. The quota is distributed to core groups according
to their power efficiency. A group’s quota is further distributed to individual cores
according to their thread criticality. In a similar vein, [10] used a control-theoretic

ACM Trans. Model. Perform. Eval. Comput. Syst., Vol. 2, No. 3, Article 17, Publication date: September 2017.

17:4 Y. Liu et al.

method along with (idle) memory power management via rank activation/deactivation.
Unfortunately, rank activation/deactivation is too slow for many applications [30]. The
work in [10, 29] required a linear power-frequency model, which may cause under-
and overcorrection in the feedback control due to poor accuracy. This may lead to large
power fluctuations, though the long-term average power is guaranteed to be under
the budget. In fact, a recent survey [12] discussed different power models used in
power/energy management. Finally, the authors in [34] considered power allocation
as a shared resource contention problem and developed a scheduling algorithm that
mitigates the contention for power and the shared memory subsystem at the same time.

2.2. Energy Management

Using CPU DVFS for energy management has been a well-studied area. Bansal et al. [4]
studied minimizing energy via CPU speed scaling without violating task deadlines.
Later, Wierman et al. [38] showed that a dynamic policy that adapts the server speed
in proportion to queue length is robust to bursty traffic and mispredictions of workload
parameters. The authors in [36] exploited the instruction-level slack to save processor
energy. The idea is to reduce processor frequency when the programs have memory
access slack. The authors in [9] proposed a mechanism for maximizing energy efficiency
in multicore CPUs by balancing the power among critical and noncritical cores.

In contrast, FastEnergy leverages both CPU and memory DVFS. The closest work to
FastEnergy is CoScale [13]. CoScale jointly manages the DVFS in cores and memory
to minimize energy consumption while meeting user-defined performance loss bounds.
CoScale explores the space of per-core and memory frequency settings in a greedy
manner. It repeatedly computes the marginal energy and performance cost (or benefit)
of altering each component’s (or set of components’) power mode by one step. CoScale
then greedily selects the next best frequency combination and iterates until a (local)
minimum is attained.

Although CoScale is effective in conserving energy and meeting performance bounds,
its search heuristic has a high time complexity of O(M+ FN2), where M is the number
of memory frequencies, F is the number of possible core frequencies, and N is the
number of cores. The quadratic dependence on the number of cores is problematic,
as core counts may increase at the speed of Moore’s law. In contrast, our FastEnergy
algorithm is linear in the number of cores.

A few other works also considered coordinating CPU and memory power manage-
ment for energy conservation subject to performance bounds [15, 24]. These earlier
works focused on single-core systems, which are easier to manage than many-core
systems. Also, they assume only idle low-power states for memory, while we consider
active low-power modes for memory (and cores). Different from these works, [5] recently
studied coordinating core and DRAM frequencies under a specific energy budget.

To summarize, Table I lists some representative works and their algorithmic time.
We compare them with our FastCap and FastEnergy as a preview.

3. MANY-CORE SYSTEM MODEL

We consider a system with N (in-order) cores, K memory banks, and a common mem-
ory bus for data transfers, as depicted in Figure 1. (We study out-of-order cores in
Section 4.3.2.) Denote by N the set of cores. We assume each core runs one application
and we name the collection of N applications a workload.

3.1. CPU Performance Model

Every core periodically issues memory access requests (resulting from last-level cache
misses and writebacks) independently of the other cores. Though the following descrip-
tion focuses on cache misses for simplicity, we also model writebacks as occupying their

ACM Trans. Model. Perform. Eval. Comput. Syst., Vol. 2, No. 3, Article 17, Publication date: September 2017.

Fast Power and Energy Management for Future Many-Core Systems 17:5

Fig. 1. The many-core queuing model demonstrating the “transfer blocking” property. Memory bank 1
receives requests from cores 4 and 3. The requested data for core 4 has been fetched and is being transferred
on the memory bus. At the same time, bank 1 is blocked from processing the request from core 3 until the
previous request is successfully transferred to core 4.

Fig. 2. An example workload dynamics with N = 3 cores. Variables zi and ci are the think time and cache
time for core i, respectively. R(sb) is the response time of the memory. zi , ci , and R(sb) are all average values.
The sum R(sb) + ci + zi is the total time for one memory access of core i.

target memory banks and the memory bus. In addition, we assume that writebacks
happen in the background, off the critical performance path of the cores.

After issuing a request, the core waits for the memory subsystem to fetch and return
the requested cache line before executing future instructions. We denote by zi, i ∈ N
the average time core i takes to generate a new request after the previous request
completes (i.e., data for the previous request is sent back to core i, see Figure 2). The
term zi is often called the think time in the literature on closed queuing networks
[19]. Further, to model core DVFS, we assume each core can be voltage and frequency
scaled independently of the other cores, as in [23, 41]. This translates to a scaled think
time: denote by zi the minimum think time achievable at the maximum core frequency.
Thus, the ratio zi/zi ∈ [0, 1] is the frequency scaling factor: setting frequency to the
maximum yields zi = zi. The minimum think time depends on the application running
on the corresponding core and may change over time. Determining the frequency for
core i is equivalent to determining the think time zi. We assume there are F frequency
levels for each core.

We assume the shared last-level cache (L2) sits in a separate voltage domain that
does not scale with core frequencies. According to our detailed simulations, changing
core frequencies does not significantly change the per-core cache miss rate. Thus, for
simplicity, we model the average L2 cache time ci for each core i as independent of the
core frequency.

3.2. Memory Performance Model

The memory is subdivided into K equally sized memory banks. Each of the K memory
banks serves requests that arrive within its address range. After serving one request,
the retrieved data is sent back to the corresponding core through a common bus that

ACM Trans. Model. Perform. Eval. Comput. Syst., Vol. 2, No. 3, Article 17, Publication date: September 2017.

17:6 Y. Liu et al.

is shared by all memory banks. The bus is used in a first-come-first-serve manner: any
request that is ready to leave a bank must queue behind all other requests from other
banks that finish earlier before it can acquire the bus. Furthermore, each memory bank
cannot process the next enqueued request until its current request is transferred to the
appropriate core. In queuing-theoretic terminology, this memory subsystem exhibits a
“transfer blocking” property [2], [3]. In Figure 1, we illustrate the transfer blocking
property via an example.

We use the mean response time, the average amount of time a request spends in the
memory (cf. Figure 2), as the performance metric for the memory. To the best of our
knowledge, no closed-form expression exists for the mean response time in a queuing
system with the transfer blocking property. Instead of deriving an explicit form for the
mean response time, we use the following approximation.

When a request arrives at a bank, let Qbe the expected number of requests enqueued
at the bank (including the newly arrived request). When the request has been processed
and is ready to be sent back to the requesting core, let U be the expected number of
enqueued requests waiting for the bus, including the departing request itself. Denote
by sm the average memory access time at each bank. Denote by sb the bus transfer time.
We approximate the mean response time of the memory subsystem as

R(sb) ≈ Q(sm + Usb). (1)

Since all cores contend for the memory access (and the contention is reflected in queue
size U and Q), Equation (1) can be treated as the mean response time seen by all cores.
A previous study [13] has found this calculation to be a good approximation to the
response time of the memory subsystem.

The memory DVFS method dynamically adjusts the bus frequency [14]. This trans-
lates to a scaled bus transfer time. Denote by sb the minimum bus transfer time at the
maximum bus frequency—the ratio sb/sb ∈ [0, 1] is the bus frequency scaling factor. We
assume the bus frequency can take M values. Determining a frequency setting for the
memory is equivalent to determining the transfer time sb.

3.3. Power Models

We model the power drawn by core i as

Pi

(
zi

zi

)αi

+ Pi,static, (2)

where Pi is the maximum dynamic power consumed by the core, αi is some exponent
typically between 2 and 3, and Pi,static is the static (voltage/frequency-independent)
power the core consumes at all times. At runtime, FastCap periodically recomputes
Pi and αi by using power estimates for core i running at different frequencies and
solving the instances of Equation (2) for these parameters. We note that many prior
papers used simple models (e.g., assuming the power is always linearly dependent on
the frequency) that do not account well for different workload characteristics [29, 37].

We model the memory power as

Pm

(
sb

sb

)β

+ Pm,static, (3)

where Pm is the maximum memory power. The memory also consumes some static
power Pm,static that does not vary with the memory frequency. At runtime, we periodi-
cally recompute Pm and β by using power estimates for the memory running at different
frequencies and solving the instances of Equation (3) for the parameters.

ACM Trans. Model. Perform. Eval. Comput. Syst., Vol. 2, No. 3, Article 17, Publication date: September 2017.

Fast Power and Energy Management for Future Many-Core Systems 17:7

Fig. 3. Validation of CPU and memory power models.

We include all the sources of power consumption that do not vary with either core
or memory frequencies into a single term Ps. This term includes the static power of
all cores

∑
i Pi,static, the memory’s static power Pm,static, the memory controller’s static

power, the L2 cache power, and the power consumed by other system components, such
as disks and network interface.

The power models in Equation (2) and Equation (3) are inputs to FastCap and Fast-
Energy. Since αi, β, Pi, Pi,static, Pm, and Pm,static are all platform-specific variables,
the power models can cover a wide range of systems. Our measurements of power as a
function of voltage/frequency for two generations of Intel CPUs reveal that Equation (2)
is an accurate model. To illustrate this claim, Figure 3(a) presents the measured and
modeled CPU power under different frequencies on a production SandyBridge server.
Clearly, the measurements validate our CPU power model. A recent study on power
versus frequency/voltage on Intel’s 32 and 22nm CPUs also revealed that Equation (2)
is a good model [39]. To validate the memory power model, we calculate the memory
power using a detailed datasheet for DDR3 DRAM from Micron [32] and plot both
calculated and modeled power values as a function of frequency in Figure 3(b). Again,
these results demonstrate that our memory power model is accurate.

To study the accuracy of our power model under dynamically changing workloads,
we simulate both CPU- and memory-bound workloads on a 16-core system using the
methodology described in Section 4.3.1. We collect full-system average power for every
5ms window. In the first 300μs of each window, we use our model to predict the average
power for the rest of the window. Figure 4 compares the average power observed and
the one our model estimates. Over the course of execution, the average modeling error
less than 5%.

3.4. Model Discussion

The preceding presentation assumes a many-core system with in-order cores and one
outstanding L2 miss per core. However, our model can easily adapt to out-of-order cores
with multiple outstanding misses per core, by making zi represent the time between
two consecutive blocking memory accesses, assuming nonblocking accesses are off the
critical path, just as cache writebacks. Since both blocking and nonblocking accesses
contend for the memory, the response time model in Equation (1) does not change and
the contention is reflected in the queue sizes Q and U . We discuss our out-of-order
implementation in Section 4.3.2.

ACM Trans. Model. Perform. Eval. Comput. Syst., Vol. 2, No. 3, Article 17, Publication date: September 2017.

17:8 Y. Liu et al.

Fig. 4. Average full-system power compared to the one-model estimates for a 16-core system running CPU-
bound and memory-bound workload, respectively.

The model discussed previously also assumes a single memory controller. It can
be easily adapted to multiple controllers by considering different response times for
different controllers. In this scenario, the probability of each core using each controller
(i.e., the access pattern) has to be considered. We defer the discussion of multiple
controllers to Section 4.3.2.

Finally, for simplicity, our model treats each hardware thread as a core; that is, we
represent a dual-threaded core as two cores. The model is oblivious to the number of
software threads running on each hardware thread.

4. FASTCAP

In this section, we introduce FastCap, an optimization framework and search algorithm
for performance-aware full-system power capping developed based on the queuing
model discussed in Section 3. FastCap considers maximizing performance under some
system-wide power budget. The goal for FastCap is to allocate power to cores and
memory fairly such that all applications degrade by the same fraction of their maximum
performance as a result of the less-than-peak power. Thus, FastCap seeks to prevent
“performance outliers,” that is, applications that get degraded much more than others.

4.1. FastCap Optimization Algorithm

Based on the queuing model (cf. Figure 2), we use the time interval between two
memory accesses (we call it turn-around time, i.e., zi + ci + R(sb)) as the performance
metric. Since a certain number of instructions is executed during a given think time zi,
the shorter the turn-around time is, the higher the instruction throughput and thus the
better the performance. Based on this metric, we propose the following optimization
for FastCap:

Maximize D (4)

subject to
zi + ci + R(sb)
zi + ci + R(sb)

≤ 1/D ∀ i ∈ N (5)

∑
i

Pi

(
zi

zi

)αi

+ Pm

(
sb

sb

)β

+ Ps ≤ BP (6)

sb ≥ sb, zi ≥ zi, sb, zi ∈ R ∀ i ∈ N . (7)

The optimization is over zi and sb. The objective is to maximize the performance (or
to minimize the performance degradation 1/D as much as possible). The constraint in
Equation (5) specifies that each core’s average turnaround time can only be at most
1/D ≥ 1 of the minimum average turnaround time for that core. (Recall that a higher

ACM Trans. Model. Perform. Eval. Comput. Syst., Vol. 2, No. 3, Article 17, Publication date: September 2017.

Fast Power and Energy Management for Future Many-Core Systems 17:9

turnaround time means lower performance.) To guarantee fairness, we apply the same
upper-bound 1/D for all cores with respect to their best possible performance (highest
core and memory frequencies). The constraint in Equation (6) specifies that the total
power consumption (core power plus memory power plus system background power)
should be no higher than the power budget. The budget is expressed as the peak full-
system power P multiplied by a given budget fraction 0 < B ≤ 1. The constraints in
Equation (7) specify the range of each variable. Since the objective function and each
constraint are convex, the optimization problem is convex.

Note that the optimization problem is constrained by the overall system budget. How-
ever, it can be extended to capture per-processor power budgets by adding a constraint
similar to the constraint in Equation (6) for each processor.

FastCap solves the optimization problem for zi and sb, and then sets each core (mem-
ory) frequency to the value that, after normalized to the maximum frequency, is the
closest to zi/zi (sb/sb). For the cores and memory controller, a change in frequency may
entail a change in voltage as well. Thus, the power consumed by each core and mem-
ory is always dynamically adjusted based on the applications’ performance needs. The
coupling of the objective in Equation (4) and constraint in Equation (5) seeks to mini-
mize the performance degradation of the application that is furthest away from its best
possible performance. Since each core has its own minimum turnaround time and the
same upper-bound proportion is applied to all cores, we ensure fairness among them
and mitigate the performance outlier problem.

The optimization problem can be solved quickly using numerical solvers such as
CPLEX. However, it can be solved substantially faster using the following observations.

THEOREM 4.1. Suppose the solution D∗, s∗
b and z∗

i , i ∈ N are the optimal solution to the
optimization problem. Then, the inequalities in Equations (5) and (6) must be equalities.

We defer the proof to the appendix.
Theorem 4.1 suggests that the optimal solution must consume the entire power

budget and each core must operate at 1/D times of its corresponding target. With the
constraints in Equations (5) and (6) as equalities, the optimal think time zi can be
solved in linear time O(N) for a given bus time sb. This is because zi can be written as

zi = zi + ci + R(sb)
D

− ci − R(sb). (8)

We then substitute Equation (8) into the constraint in Equation (6) and solve for D
using the equality condition for the constraint in Equation (6). Then, all optimal zi can
be computed in linear time using Equation (8).

We can then exhaustively search through M possible values for sb to find the globally
optimal solution. However, since the optimization problem is convex, we only need to
find a local optimal. Since we can find an optimal solution for each bus transfer time
sb, we can simply perform a binary search across all M possible values for sb to find the
local optimal. This results in the O(N log M) algorithm shown in Algorithm 1.

4.2. FastCap Implementation

4.2.1. Operation. FastCap splits time into fixed-size epochs of L milliseconds each. It
collects performance counters from each core 300μs into each epoch and uses them
as inputs to the frequency selection algorithm. We call this 300μs the profiling phase,
and empirically, we find its length enough to capture the latest application behaviors.
During the profiling phase, the applications execute normally.

Given the inputs, the OS runs the FastCap algorithm and, depending on the outcome,
may transition to new core and/or memory voltage/frequencies for the remainder of the

ACM Trans. Model. Perform. Eval. Comput. Syst., Vol. 2, No. 3, Article 17, Publication date: September 2017.

17:10 Y. Liu et al.

ALGORITHM 1: FastCap O(N log M) Algorithm

1: Inputs: {Pi}, {αi}, Pm, β, Ps, {zi}, sb, Q, U , sm, B, P, and an ordered array of M
candidate values for sb.

2: Outputs: {zi} and sb
3: Let � := 0 and r := M − 1.
4: while �
= r do
5: m := (� + r)/2.
6: Solve the optimal D for the mth sb value.
7: Solve the optimal D for the (m± 1)th sb values. Let the optimal D be denoted as

D+ and D−, respectively.
8: if D < D+ then
9: � := m

10: else if D− > D then
11: r := m
12: else
13: break
14: end if
15: end while
16: Set each core (memory) frequency to the closest frequency to zi/zi (sb/sb) after

normalization.

epoch. During a core’s frequency transition, the core does not execute instructions. To
adjust the memory frequency, all memory accesses are temporarily halted, and PLLs
and DLLs are resynchronized. The core and memory transition overheads are negligible
(tens of microseconds) compared to the epoch length (in milliseconds).

4.2.2. Collecting Input Parameters. Several key FastCap parameters, such as Pi, αi, Pm,
β, the minimum think time zi, and queue sizes Qand U , come directly or indirectly from
performance counters. Now, we detail how we obtain the inputs to the algorithm from
the counters. To compute zi, we use the following counters: (1) TPIi, Time Per Instruc-
tion for core i during profiling; (2) TICi, Total Instructions Executed during profiling;
and (3) TLMi, Total Last-Level Cache Misses (or number of memory accesses) during
profiling. The ratio between TICi and TLMi is the average number of instructions
executed between two memory accesses. We then set zi as

TPIi × TICi

TLMi
(9)

and then scale it by the ratio between the maximum frequency and the frequency used
during profiling.

To obtain Pi, αi, Pm, and β, FastCap keeps data about the last three frequencies it
has seen and periodically recomputes these parameters. To obtain Q and U , we use the
performance counters that log the average queue sizes at each memory bank and bus.
We obtain Q by taking the average queue size across all banks. We obtain U directly
from the corresponding counter. To obtain sm, we take the average memory access
time at each bank during the profiling phase. The minimum bus transfer time sb is a
constant and, since each request takes a fixed number of cycles to be transferred on the
bus (the exact number depends on the bus frequency), we simply divide the number of
cycles by the maximum memory frequency to obtain sb. All background power draws
(independent of core/memory frequencies or workload) are measured and/or estimated
statically.

ACM Trans. Model. Perform. Eval. Comput. Syst., Vol. 2, No. 3, Article 17, Publication date: September 2017.

Fast Power and Energy Management for Future Many-Core Systems 17:11

4.2.3. Hardware and Software Costs. FastCap requires no architectural or software sup-
port beyond that in [13]. Specifically, core DVFS is widely available in commodity
hardware, although today one may see fewer voltage domains than cores. Research has
shown this is likely to change soon [23, 41]. Existing DIMMs support multiple frequen-
cies and can switch among them by transitioning to power-down or self-refresh states
[22], although this capability is typically not used by current servers. Integrated CMOS
memory controllers can leverage existing DVFS technology. One needed change is for
the memory controller to have separate voltage and frequency control from other pro-
cessor components. In recent Intel architectures, this would require separating shared
cache and memory controller voltage control.

In terms of software, the OS must periodically invoke FastCap and collect sev-
eral performance counters. When FastCap adjusts the frequency of a component, the
operation in that component is suspended briefly. However, FastCap operates at the
granularity of milliseconds and transition latencies are in the tens of microseconds, so
the overheads are negligible. Furthermore, as we show in Section 4.3.2, the algorithm
execution is also in the tens of microseconds and thus negligible as well.

4.3. FastCap Evaluation

4.3.1. Methodology. We adopt the simulation infrastructure used in [13]. We assume
per-core DVFS, with 10 equally spaced frequencies in the range 2.2 to 4.0GHz. We
assume a voltage range matching Intel’s Sandybridge, from 0.65V to 1.2V, with voltage
and frequency scaling proportionally, which matches the behavior we measured on an
i7 CPU. We scale memory controller frequency and voltage, but only frequency for the
memory bus and DRAM chips. The on-chip four-channel memory controller has the
same voltage range as the cores, and its frequency is always double that of the memory
bus. We assume that the bus and DRAM chips may be frequency scaled from 800MHz
down to 200MHz, in steps of 66MHz. The infrastructure simulates in detail the aspects
of cores, caches, memory controllers, and memory devices that are relevant to our study,
including memory device power and timing, and row buffer management. Table II lists
our default simulation settings.

We model the power for the non-CPU, nonmemory components as a fixed 10W. Under
our baseline assumptions, at maximum frequencies, the CPU accounts for roughly 60%,
the memory subsystem 30%, and other components 10% of system power.

We construct the workloads by combining applications from the SPEC 2000 and
SPEC 2006 suites. We group them into the same mixes as [14, 42]. The workload classes
are memory intensive (MEM), compute intensive (ILP), compute-memory balanced
(MID), and mixed (MIX, one or two applications from each other class). We run the
best 100M-instruction simulation point for each application (selected using Simpoints
3.0). A workload terminates when its slowest application has run 100M instructions.
Table III describes the workloads and the L2 misses per kilo-instruction (MPKI) and
writebacks per kilo-instruction (WPKI) for N = 16. We execute N/4 copies of each
application to occupy all N cores.

4.3.2. Results. We first run all workloads under the maximum frequencies to observe
the peak power the system ever consumed. We observe the peak power P to be 60 watts
for four cores, 120 watts for 16 cores, 210 watts for 32 cores, and 375 watts for 64 cores.
We present results for a 16-core system in which FastCap is called every L = 5ms.
(The 5ms epoch length matches a common OS time quantum.)

Power consumption. We first evaluate FastCap under a 60% power budget fraction;
that is, B in Equation (6) equals 60%. Figure 5 shows the average power spent by Fast-
Cap running each workload on the 16-core system. FastCap successfully maintains
overall system power to be just under 60% of the peak power.

ACM Trans. Model. Perform. Eval. Comput. Syst., Vol. 2, No. 3, Article 17, Publication date: September 2017.

17:12 Y. Liu et al.

Table II. Main System Settings

Feature Value
CPU cores N in-order, single thread, 4GHz

Single IALU IMul FpALU FpMulDiv
L1 I/D cache (per core) 32KB, 4-way, 1 CPU cycle hit
L2 cache (shared) 16MB, N-way, 30 CPU cycle hit
Cache block size 64 bytes
Memory configuration 4 DDR3 channels for 16 and 32 cores

8 DDR3 channels for 64 cores
8 2GB ECC DIMMs

Time

tRCD, tRP, tCL 15ns, 15ns, 15ns
tFAW 20 cycles
tRTP 5 cycles
tRAS 28 cycles
tRRD 4 cycles
Refresh period 64ms

Current

Row buffer 250mA (read), 250mA (write)
Precharge 120mA
Active standby 67mA
Active pwrdown 45mA
Precharge standby 70mA
Precharge pwrdown 45mA
Refresh 240mA

Table III. Workload Descriptions

Name MPKI WPKI Applications (×N/4 each)
ILP1 0.37 0.06 vortex gcc sixtrack mesa
ILP2 0.16 0.03 perlbmk crafty gzip eon
ILP3 0.27 0.07 sixtrack mesa perlbmk crafty
ILP4 0.25 0.04 vortex gcc gzip eon
MID1 1.76 0.74 ammp gap wupwise vpr
MID2 2.61 0.89 astar parser twolf facerec
MID3 1.00 0.60 apsi bzip2 ammp gap
MID4 2.13 0.90 wupwise vpr astar parser
MEM1 18.22 7.92 swim applu galgel equake
MEM2 7.75 2.53 art milc mgrid fma3d
MEM3 7.93 2.55 fma3d mgrid galgel equake
MEM4 15.07 7.31 swim applu sphinx3 lucas
MIX1 2.93 2.56 applu hmmer gap gzip
MIX2 2.55 0.80 milc gobmk facerec perlbmk
MIX3 2.34 0.39 equake ammp sjeng crafty
MIX4 3.62 1.20 swim ammp twolf sixtrack

Figure 6 shows the FastCap behavior for three power budgets (as a fraction of the full-
system peak power) for the MEM3 workload as a function of epoch number. The figure
shows that FastCap corrects budget violations very quickly (within 10ms), regardless of
the budget. Note that MEM3 exhibits per-epoch average powers somewhat lower than
the cap for B = 80%. This is because memory-bound workloads do not consume 80% of
the peak power, even when running at the maximum core and memory frequencies.

Application performance. Recall that, under tight power budgets, FastCap seeks
to achieve similar (fractional) performance losses compared to using maximum

ACM Trans. Model. Perform. Eval. Comput. Syst., Vol. 2, No. 3, Article 17, Publication date: September 2017.

Fast Power and Energy Management for Future Many-Core Systems 17:13

Fig. 5. Average power normalized to the peak power. Power budget is 60% of the peak power. FastCap
successfully maintains power consumption at the specified 60% level for a wide range of applications.

Fig. 6. Average power, normalized to the peak power when running MEM3 as a function of time and power
budget.

Fig. 7. Average and worst application performance for each workload class and three power budgets. Values
above 1 represent the percentage application performance loss.

frequencies for all applications. So, where we discuss a performance loss later, we are
referring to the performance degradation (compared to a run at maximum frequency)
due to power capping, and not to the absolute performance.

Figure 7 shows the average and worst application performance (in cycles per in-
struction or CPI) normalized to the baseline system (maximum core and memory fre-
quencies) for all ILP, MEM, MID, and MIX workloads. The higher the bar, the worse
the performance is compared to the baseline. For each workload class, we compute the
average and worst application performance across all applications in workloads of the
class. For example, the ILP average performance is the average CPI of all applications
in ILP1, ILP2, ILP3, and ILP4, whereas the worst performance is the highest CPI

ACM Trans. Model. Perform. Eval. Comput. Syst., Vol. 2, No. 3, Article 17, Publication date: September 2017.

17:14 Y. Liu et al.

among all applications in these workloads. In the figure, values above 1 represent the
percentage application performance loss.

Figure 7 shows that the worst application performance differs only slightly from
the average performance. This result shows that FastCap is fair in its (performance-
aware) allocation of the power budget to applications. The figure also shows that the
performance of memory-bound workloads (MEM) tends to degrade less than that of
CPU-bound workloads (ILP) under the same power budget. This is because the MEM
workloads usually consume less full-system power than their ILP counterparts. Thus,
for the same power budget, the MEM workloads require smaller-frequency reductions,
and thus exhibit smaller fractional performance losses.

Core/memory frequencies. FastCap smartly adjusts the core and memory frequen-
cies based on the application needs. For instance, in the CPU-bound workload ILP1, the
cores run at high frequency (around 3.5GHz), while the memory runs at low frequency
(around 200MHz). In the memory-bound workload MEM1, the cores run at low fre-
quency (around 3.0GHz), while the memory runs at high frequency (around 800MHz).
In workload MIX4, which consists of both CPU- and memory-bound applications, mem-
ory frequencies are in the middle of the range (around 500MHz). The exact frequencies
FastCap selects vary in epochs depending on the workload dynamics in each epoch.

FastCap compared with others policies. We now compare FastCap against other
power capping policies. All policies are capable of controlling the power consumption
to around the budget, so we focus mostly on their performance implications. We first
compare against policies that do not use memory DVFS.

“CPU-only” sets the core frequencies using the FastCap algorithm for every epoch
but keeps the memory frequency fixed at the maximum value. The comparison to CPU-
only isolates the impact of being able also to manage memory subsystem power using
DVFS. All prior power capping policies suffer from the lack of this additional capability.

“Freq-Par” is a control-theoretic policy from [29]. In Freq-Par, the core power is
adjusted in every epoch based on a linear feedback control loop; each core receives a
frequency allocation that is based on its power efficiency. Freq-Par uses a linear power-
frequency model to correct the average core power from epoch to epoch. We again keep
the memory frequency fixed at the maximum value.

Figure 8 shows the performance comparison between FastCap and these policies on
a 16-core system. FastCap performs at least as well as CPU-only in both average and
worst application performance, showing that the ability to manage memory power is
highly beneficial. Setting memory frequency at the maximum causes the cores to run
slower for CPU-bound applications, in order to respect the power budget. This leads
to severe performance degradation in some cases. For the MEM workloads, FastCap
and CPU-only perform almost the same, as the memory subsystem can often be at its
maximum frequency in FastCap to minimize performance loss within the power budget.
Still, it is often beneficial to change the power balance between cores and memory, as
workloads change phases. FastCap is the only policy that has the ability to do so.

The comparison against Freq-Par is more striking. FastCap (and CPU-only) performs
substantially better than Freq-Par in both average and worst application performance.
In fact, Freq-Par shows significant gaps between these types of performance, showing
that it does not allocate power fairly across applications (inefficient cores receive less
of the overall power budget). Moreover, Freq-Par’s linear power-frequency model can
be inaccurate and causes the feedback control to overcorrect and undercorrect often.
This leads to severe power oscillation, although the long-term average is guaranteed
by the control stability. For example, the power oscillates between 53% and 65% under
Freq-Par for MIX3.

ACM Trans. Model. Perform. Eval. Comput. Syst., Vol. 2, No. 3, Article 17, Publication date: September 2017.

Fast Power and Energy Management for Future Many-Core Systems 17:15

Fig. 8. FastCap compared with CPU-only,* Freq-Par,* and Eql-Pwr in normalized average/worst application
performance. Values above 1 represent the percentage application performance loss. “*” indicates fixed
memory frequency. Power budget is 60% of the peak power.

Next, we study policies that use DVFS for both cores and the memory subsystem.
These policies are inspired by prior works, but we add FastCap’s ability to manage
memory power to them:

“Eql-Pwr” assigns an equal share of the overall power budget to all cores, as proposed
in [35]. We implement it as a variant of FastCap: for each memory frequency, we
compute the power share for each core by subtracting the memory power (and the
background power) from the full-system power budget and dividing the result by N.
Then, we set each core’s frequency as high as possible without violating the per-core
budget. For each epoch, we search through all M memory frequencies and use the
solution that yields the best D in Equation (4).

“Eql-Freq” assigns the same frequency to all cores, as proposed in [20]. Again, we
implement it as a variant of FastCap: for each epoch, we search through all M and F
frequencies to determine the pair that yields the highest D in Equation (4).

“MaxBIPS” was proposed in [21]. Its goal is to maximize the total number of executed
instructions in each epoch, that is, to maximize the throughput. To solve the optimiza-
tion, [21] exhaustively searches through all core frequency settings. We implement this
search to evaluate all possible combinations of core and memory frequencies within the
power budget.

Eql-Pwr ignores the heterogeneity in the applications’ power profiles. By splitting
the core power budget equally, some applications receive too much budget and even
running at the maximum frequency cannot fully consume it. Meanwhile, some power-
hungry applications do not receive enough budget and thus result in performance loss.
This is most obvious in workloads with a mixture of CPU-bound and memory-bound
applications (e.g., MIX4). As a result, we observe in Figure 8 that Eql-Pwr’s worst
application performance loss is often much higher than FastCap’s.

Eql-Freq also ignores application heterogeneity. In Eql-Freq, having all core frequen-
cies locked together means that some applications may be forced to run slowly, because
raising all frequencies to the next level may violate the power budget. This is a more
serious problem when the workload consists of a mixture of CPU- and memory-bound
applications on a large number of cores. To see this, Figure 9(a) plots the normalized
average and worst application performance for FastCap and Eql-Freq when running
the MIX workloads on a 64-core system. (We choose to show results on a 64-core system

ACM Trans. Model. Perform. Eval. Comput. Syst., Vol. 2, No. 3, Article 17, Publication date: September 2017.

17:16 Y. Liu et al.

Fig. 9. FastCap compared with EqlFreq and maxBIPS. Values above 1 represent the percentage application
performance loss.

Fig. 10. FastCap average power and maximum average power, both normalized to the peak power in many
configurations. Power budget is 60% of the peak power.

to magnify the comparison.) The figure shows that Eql-Freq is more conservative than
FastCap and often cannot fully harvest the power budget to improve performance.

Finally, besides its use of exhaustive search, the main problem of MaxBIPS is that
it completely disregards fairness across applications. Figure 9(b) compares the nor-
malized average and worst application performance for the MIX workloads under a
60% budget. Because of the high overhead of MaxBIPS, the figure shows results for
only four-core systems. The figure shows that FastCap is slightly inferior in average
application performance, as MaxBIPS always seeks the highest possible instruction
throughput. However, FastCap achieves significantly better worst application perfor-
mance and fairness. To maximize the overall throughput, MaxBIPS may favor appli-
cations that are more power efficient, that is, have higher throughput at a low power
cost. This reduces the power allocated to other applications and the outlier problem
occurs. This is particularly true for workloads that consist of a mixture of CPU- and
memory-bound applications.

Impact of number of cores. We now study the impact of the number of cores on
FastCap’s ability to limit power draw (Figure 10) and to provide fair application per-
formance (Figure 11).

Figure 10 depicts pairs of bars for each workload class on systems with 16, 32, and
64 cores, under a 60% power budget. The bar on the right of each pair is the maximum
average power of any epoch of any application of the same class normalized to the peak
power, whereas the bar on the left is the normalized average power for the workload

ACM Trans. Model. Perform. Eval. Comput. Syst., Vol. 2, No. 3, Article 17, Publication date: September 2017.

Fast Power and Energy Management for Future Many-Core Systems 17:17

Fig. 11. Normalized FastCap average and worst application performance in many configurations. Values
above 1 represent the percentage application performance loss. Power budget is 60% of the peak power.

with the maximum average power. Comparing these bars determines whether FastCap
is capable of respecting the budget even when there are a few epochs with slightly
higher average power. The figure clearly shows that FastCap is able to do so (all
average power bars are at or slightly below 60%), even though increasing the number
of cores does increase the maximum average power slightly. This effect is noticeable
for workloads that have CPU-bound applications on 64 cores. In addition, note that the
MEM workloads do not reach the maximum budget on 64 cores, as these workloads do
not consume the power budget on this large system even when they run at maximum
frequencies.

Figure 11 also shows pairs of bars for each workload class under the same assump-
tions. This time, the bar on the right of each pair is the normalized worst performance
among all applications in a class, and the bar on the left is the normalized average
performance of all applications in the class. The figure shows that FastCap is very
successful at allocating power fairly across applications, regardless of the number of
cores; the worst application performance is always only slightly worse than the aver-
age performance. The figure also shows that application performance losses decrease
as we increase the number of cores, especially for MEM workloads. (Recall that we
are comparing performance losses due to power capping; absolute performance cannot
be compared because the baselines are different.) The reason is that MEM workloads
on the larger numbers of cores are bottlenecked by the memory subsystem even when
they execute at maximum frequencies.

Epoch length and algorithm overhead. By default, FastCap runs at the end of
every OS time quantum (5ms in our experiments so far in the article). The overhead
of FastCap scales linearly with the number of cores. Specifically, we run the FastCap
algorithm for 100k times and collect the average time of each execution. The average
time is 33.5μs for 16 cores, 64.9μs for 32 cores, and 133.5μs for 64 cores. For a 5ms epoch
length, these overheads are 0.7%, 1.3%, and 2.7% of the epoch lengths, respectively. If
these levels of overhead are unacceptable, FastCap can execute at a coarser granularity.
Using our simulator, we studied epoch lengths of 10ms and 20ms. We find that these
epoch lengths do not affect FastCap’s ability to control average power and performance
for the applications and workloads we consider.

Out-of-order (OoO) execution. Our results so far have assumed in-order cores.
However, FastCap can be easily extended to handle the OoO executions. In OoO, the
core may be able to continue executing the next instruction after issuing a memory
access without stalling. In FastCap’s terminology, the think time thus becomes the

ACM Trans. Model. Perform. Eval. Comput. Syst., Vol. 2, No. 3, Article 17, Publication date: September 2017.

17:18 Y. Liu et al.

interval between two core stalls (not between two main memory accesses). The
workload becomes more CPU bound.

Unfortunately, our trace-based methodology does not allow detailed OoO modeling.
However, we can approximate the latency hiding and additional memory pressure of
OoO. Specifically, we simulate idealized OoO executions by assuming a large instruction
window (128 entries) and disregarding instruction dependencies within the window.
This models an upper bound on the memory-level parallelism (and has no impact on
instruction-level parallelism, since we still simulate a single-issue pipeline).

Figure 10 shows four pairs of bars for the OoO executions of the workload classes
on 16 cores and under a 60% power budget. The results can be compared to the bars
for 16 cores on the left side of the figure. This comparison shows that FastCap is
equally successful at limiting the power draw to the budget, regardless of the processor
execution mode.

Similarly, Figure 11 shows four pairs of bars for OoO executions on 16 cores, under a
60% budget. These performance loss results can also be compared to those for 16 cores
on the left of this figure. The comparison shows that workloads with memory-bound ap-
plications tend to exhibit higher performance losses in OoO execution mode. The reason
is that the performance of these applications improves significantly at maximum fre-
quencies, as a result of OoO; both cores and memory become more highly utilized. When
FastCap imposes a lower-than-peak budget, frequencies must be reduced and perfor-
mance suffers more significantly. Directly comparing frequencies across the execution
modes, we find that memory-bound workloads tend to exhibit higher core frequencies
and lower memory frequency under OoO than under in-order execution. This result is
not surprising since the memory can become slower in OoO without affecting perfor-
mance because of the large instruction window. Most importantly, FastCap is still able
to provide fairness in power allocation in OoO, as the performance losses are roughly
evenly distributed across all applications.

Multiple memory controllers. So far we have assumed a single memory controller.
In many-core systems, there may be multiple memory controllers, each handling a
subset of the memory channels. For FastCap to support multiple memory controllers
(operating at the same frequency), we use the existing performance counters to keep
track of the average queue sizes Q and U of each memory controller. Thus, different
memory controllers can have different response times (cf. Equation (1)). We also keep
track of the probability of each core’s requests going through each memory controller.
In this approach, the response time R in Equation (5) becomes a weighted average
across all memory controllers and different cores experience different response times.

To study the impact of multiple memory controllers, we simulate four controllers in
our 16-core system. In addition, we simulate two memory interleaving schemes: one in
which the memory accesses are uniformly distributed across memory controllers, and
one in which the distribution is highly skewed. In the uniformly distributed case, all
memory controllers have roughly the same response time and all cores see the same
response time. In the skewed distribution, some memory controllers are overloaded.

Figure 10 shows four pairs of bars for the skewed distribution on 16 cores, under a
60% budget. Compare these results to the 16-core data on the left side of the figure.
The skewed distribution causes higher maximum power in the MEM workloads. Still,
FastCap is able to keep the average performance for the workload with this maximum
power slightly below the 60% budget.

Again, Figure 11 shows four pairs of the skewed distribution on 16 cores, under a
60% budget. We can compare these performance losses to the 16-core data on the left of
the figure. The comparison shows that FastCap provides fair application performance
even under multiple controllers with highly skewed access distributions.

ACM Trans. Model. Perform. Eval. Comput. Syst., Vol. 2, No. 3, Article 17, Publication date: September 2017.

Fast Power and Energy Management for Future Many-Core Systems 17:19

Finally, FastCap uses the same frequency for all memory controllers. However, it
may be more desirable to have different controllers running at different frequencies.
This would introduce extra algorithmic complexity and we leave it as future work.

5. FASTENERGY

In this section, we introduce FastEnergy, an optimization framework and search al-
gorithm for energy conservation developed based on the queuing model discussed in
Section 3.

The goal of FastEnergy is to conserve as much energy as possible without degrad-
ing the performance of applications by more than a user-defined (percentage) bound.
Accomplishing this online is challenging for two reasons: (1) the future amount of
workload is not known in advance, and (2) there is a combinatorial space of possible
power/performance states from which to choose in many-core systems. Our solution
is to leverage the queuing model from Section 3 to select power/performance states
efficiently, while limiting the performance degradation to the bound. As we show in
Table I, FastEnergy has the lowest algorithmic time complexity than the state-of-the-
art approaches to energy conservation. We show in Section 5.3 that FastEnergy also
conserves more energy among those approaches without violating the performance loss
bound.

5.1. FastEnergy Optimization Algorithm

Based on the queuing model (cf. Figure 2), we design FastEnergy to minimize the aver-
age energy required for all cores to complete one memory request each (or equivalently,
execute all the instructions between two memory requests), which is∑

i

Pi

(
zi

zi

)αi

zi +
[

Pm

(
sb

sb

)β

+ Ps

] ∑
i(R(sb) + zi + ci)

N
, (10)

subject to the per-core delay constraints:

R(sb) + zi + ci ≤ Ti ∀ i ∈ N . (11)

The parameter Ti constrains the maximum allowable performance degradation and
specifies the performance requirement for each core in terms of the average time to
complete one memory access (cf. Figure 2).

The optimization variables are zi and sb, which must satisfy

sb ≤ sb, zi ≤ zi ∀ i ∈ N . (12)

The first term in Equation (10), ∑
i

Pi

(
zi

zi

)αi

zi,

corresponds to the energy consumed by the cores during instruction execution (cf. Equa-
tion (2)). The energy associated with the static (voltage/frequency-independent) power
is captured by Ps in the second term. The second term,[

Pm

(
sb

sb

)β

+ Ps

] ∑
i(R(sb) + zi + ci)

N
,

corresponds to the energy consumed by the memory and all other power components
that do not depend on CPU/memory frequencies. The second term is averaged over the
number of cores N because it is the background power seen by all the cores. Because of
the term Pmzi(sb/sb)β , the objective function in Equation (10) is nonconvex in zi and sb.

ACM Trans. Model. Perform. Eval. Comput. Syst., Vol. 2, No. 3, Article 17, Publication date: September 2017.

17:20 Y. Liu et al.

For out-of-order cores, Equation (10) can be interpreted as the average energy needed
for all cores to complete one blocking memory request each.

To derive FastEnergy’s algorithm, we make the following key observation in Theo-
rem 5.1.

THEOREM 5.1. For each given bus transfer time sb, the optimization problem (Equations
(10) to (12)) is conditionally convex in the zi, and the optimal think time zi can be
determined in linear time O(N) and in closed form. Specifically, each optimal zi can be
one of only three values z′

i , ẑi , and zi (the minimum think time), where

z′
i = Ti − ci − R(sb),

ẑi =
(

(αi − 1)NPizi
αi

Ps + Pm(sb/sb)β

) 1
αi

.

Intuitively, since the bus transfer time is experienced by all N cores, it is natural
first to determine its value and then, conditioned on the bus transfer time, determine
the think time for each core. We defer the proof of Theorem 5.1 to the appendix.

Motivated by Theorem 5.1, FastEnergy implements the following algorithm. For each
bus transfer time sb, it computes the think times zi for all cores in linear time. Then,
it evaluates the objective function in Equation (10) using the computed zi and sb. After
exhausting all the M possible values for sb, it returns the outputs with the minimum
objective value. The algorithm complexity is O(NM), and we outline the pseudo-code
in Algorithm 2.

The optimality of Algorithm 2 is shown in Theorem 5.2.

THEOREM 5.2. Algorithm 2 computes the global optimal solution for the nonconvex
optimization problem (Equations (10) to (12)).

We defer the proof of Theorem 5.2 and the derivation of Algorithm 2 to the appendix.
Note that the optimization problem (Equations (10) to (12)) itself is nonconvex (it only
becomes convex for a given bus transfer time). However, as the bus transfer time can
only take M discrete values, we are able to exhaustively search for the global optimal
solution.

5.2. FastEnergy Implementation

5.2.1. Operation. We operate FastEnergy the same way as we operate FastCap in Sec-
tion 4.2.1. The optimization parameters, such as Pi, αi, Pm, and β; the minimum think
time zi; and queue sizes Q and U are computed the same way as in FastCap.

5.2.2. Performance Management. We now discuss how we set the performance constraint
Ti. This constraint is recalculated at the beginning of each epoch. Similar to the ap-
proach proposed in [25], our policy is based on the notion of performance slack. The
performance slack is the difference between the execution time of a baseline implemen-
tation and the execution time targeted by FastEnergy. The baseline implementation
does not use energy management. Rather, it keeps the frequencies of all cores and
of the memory at the maximum. The amount of slack controls the tradeoff between
performance and energy consumption. In contrast to the prior works [25], we use the
number of memory accesses to manage performance.

To understand how we do so, recall that R(sb) + zi + ci is the average time between
two consecutive memory accesses by core i. Thus, L/(R(sb) + zi + ci) is the average
number of accesses issued by core i during an Lms epoch. Let R(sb) denote the average
memory access time under the maximum memory frequency, that is,, R(sb) = Q(sm +
Usb) (cf. Equation (1)), and then L/(R(sb) + zi + ci) is the average number of accesses
in the baseline system. FastEnergy’s performance target is to complete a fraction of

ACM Trans. Model. Perform. Eval. Comput. Syst., Vol. 2, No. 3, Article 17, Publication date: September 2017.

Fast Power and Energy Management for Future Many-Core Systems 17:21

ALGORITHM 2: FastEnergyO(NM) Algorithm

1: Inputs: {Pi}, {αi}, Pm, β, Ps, {zi}, sb, Q, U , sm, B, P, and an ordered array of M
candidate values for sb.

2: Outputs: {zi} and sb
3: Initialize sb = sb and zi = zi, for all i ∈ N .
4: Compute performance constraint Ti, for all i ∈ N .
5: for each sb in an increasing order in M do
6: for each core i ∈ N do

7: Compute ẑi =
(

(αi−1)NPi zi
αi

Ps+Pm(sb/sb)β

) 1
αi .

8: Compute z′
i = Ti − ci − R(sb).

9: if zi > z′
i then

10: return sb and zi, for all i ∈ N .
11: else if ẑi < z′

i and ẑi > zi then
12: zi = ẑi.
13: else if zi < z′

i and (αi−1)Pi zi
αi

z′αi
i

− Ps+Pm(sb/sb)β

N > 0 then

14: zi = z′
i.

15: else if zi < z′
i and Ps+Pm(sb/sb)β

N − (αi − 1)Pi > 0 then
16: zi = zi.
17: else
18: zi = zi.
19: end if
20: end for
21: Evaluate Equation (10) and compare with the best objective value. Update if the

best objective value is larger.
22: end for
23: return sb and zi for all i ∈ N .

at least 1 − γ of the memory accesses in the baseline system, where 0 ≤ γ < 1.
The parameter γ can be interpreted as the maximum allowed fractional performance
slowdown/degradation. When γ > 0, each epoch adds some amount of performance
slack.

To set the performance constraints (and compute Ti), at the beginning of every epoch
and for every core, FastEnergy computes

(1 − γ)
(

L
R(sb) + zi + ci

)
+ Xi, (13)

where the value Xi measures the difference between the target performance and the
actual FastEnergy execution in number of memory accesses so far. A positive Xi means
FastEnergy is falling behind, and thus needs to perform more memory accesses in
the next epoch. A negative Xi means FastEnergy is running faster than the target,
and the execution can be slowed down if doing so would save energy. Equation (13)
provides the desired bound for L/(R(sb) + zi + ci). Rearranging the terms, we arrive at
our performance constraint Ti:

R(sb) + zi + ci ≤ L

(1 − γ)
(

L
R(sb)+zi+ci

)
+ Xi

=: Ti ∀ i. (14)

It is possible that Equation (14) cannot be satisfied, meaning that one or more cores
cannot catch up in a single epoch. In such a situation, FastEnergy runs those cores at

ACM Trans. Model. Perform. Eval. Comput. Syst., Vol. 2, No. 3, Article 17, Publication date: September 2017.

17:22 Y. Liu et al.

Fig. 12. FastEnergy energy and performance on N = 16 cores.

the maximum frequency. With the slack added in the next epochs, the equation will
eventually be satisfied again.

5.2.3. Hardware and Software Costs. FastEnergy requires the same features and has the
same costs as FastCap.

5.3. FastEnergy Evaluation

To evaluate FastEnergy, we use the same evaluation methodology as for FastCap in
Section 4.3.1.

FastEnergy energy and performance. In Figure 12(a), we plot the FastEnergy
energy savings (full system, CPU, and memory) as a percentage of the baseline execu-
tion (in maximum core and memory frequencies) of our workloads. Figure 12(b) shows
the performance degradation compared to the baseline, where the maximum allowed
degradation is γ = 0.1 (constraints in Equation (13)); that is, FastEnergy is allowed to
slow applications down by at most 10% compared to the baseline.

As one would expect, Figure 12(a) shows that FastEnergy obtains more energy sav-
ings from the memory subsystem in CPU-intensive workloads (long think times zi) and
more savings from the cores in memory-intensive workloads (short think times zi). The
full-system energy savings averaged across all the workloads are 16%.

In Figure 12(b), we note that FastEnergy maintains the maximum performance
degradation of any application in a workload very close to 10%, the maximum allowed
slowdown. For some workloads, both the average and worst-case degradations are
lower than 10%. The reason is that, for those workloads, running slower would have
increased energy consumption (the small savings from the lower dynamic energy would
have been outweighed by the static energy).

FastEnergy compared to other methods. In Figure 13, we compare FastEnergy
with other energy management methods, again for N = 16 cores with 10% maximum
allowed performance degradation (γ = 0.1). The energy savings in the figure are the
average savings over all workloads.

We have already described CoScale. MemScale represents the scenario in which the
system uses only memory subsystem DVFS. CPUOnly represents the scenario with
CPU DVFS only. To be optimistic about this alternative, we assume that it considers
all possible combinations of core frequencies and selects the best. In both MemScale
and CPUOnly, the performance-aware energy management policy assumes that the
behavior of the components that are not being managed will stay the same in the next
epoch as in the profiling phase. Uncoordinated (or Uncoord for short) applies to both

ACM Trans. Model. Perform. Eval. Comput. Syst., Vol. 2, No. 3, Article 17, Publication date: September 2017.

Fast Power and Energy Management for Future Many-Core Systems 17:23

Fig. 13. FastEnergy compared with other methods, N = 16.

MemScale and CPU DVFS, but in a completely independent fashion. In determining
the performance slack available to it, the CPU power manager assumes that the
memory subsystem will remain at the same frequency as in the previous epoch, and
that it has accumulated no performance degradation; the memory power manager
makes the same assumptions about the cores. Hence, each manager believes that it
alone influences the slack in each epoch, which is not the case. Semicoordinated (or
simply Semi-coord) increases the level of coordination slightly by allowing the CPU
and memory power managers to share the same overall slack; that is, each manager
is aware of the past performance degradation produced by the other. However, each
manager still tries to consume the entire slack independently in each epoch (i.e.,
the two managers account for one another’s past actions but do not coordinate their
estimate of future performance). Finally, Offline relies on a perfect offline performance
trace for every epoch and then selects the best frequency for each epoch by considering
all possible core and memory frequency settings. As the number of possible settings
is exponential, Offline is impractical and is studied simply as an upper bound on how
well FastEnergy can do. However, Offline is not necessarily optimal, since it uses the

ACM Trans. Model. Perform. Eval. Comput. Syst., Vol. 2, No. 3, Article 17, Publication date: September 2017.

17:24 Y. Liu et al.

same epoch-by-epoch greedy decision making as CoScale (i.e., a hypothetical oracle
might choose to accumulate slack in order to spend it in later epochs).

We observe that FastEnergy’s energy savings and performance degradation are com-
parable to those of CoScale. The MemScale method only saves memory subsystem
energy, as it does not optimize the cores’ frequencies. CPU-only does the opposite,
only saving energy in the CPU without adapting memory’s frequency. Although Un-
coordinated can save substantial energy, it is unable to keep performance within the
maximum allowed degradation. In some cases, the performance degradation reaches
19%, nearly twice the maximum allowed. Semicoordinated keeps the worst perfor-
mance degradation within the bound, because both the CPU and memory frequency
managers share the same performance estimate. However, because of frequent oscil-
lations and settling at suboptimal solutions, Semicoordinated consumes more energy
than FastEnergy. The comparison to Offline shows that both FastEnergy and CoScale
behave extremely well in terms of energy savings and performance.

Dynamic behavior. In Figure 14, we present the optimal frequencies selected by
FastEnergy alongside the ones selected by CoScale. We plot the frequencies of the core
running application applu in MIX2 and the frequencies of the memory over time.

We note that FastEnergy selects different frequencies than CoScale for both the
memory and the core. However, the full-system energy savings for FastEnergy run-
ning MIX2 is 14.7%, almost the same as the 14.6% for CoScale. This is because, al-
though FastEnergy computes the global optimal solution for the optimization (Equa-
tions (10) and (11)), the optimization formulation itself is only an approximation of
the real system. Algorithms that do not leverage FastEnergy’s optimization framework
may settle on a different solution with comparable energy savings and performance
results.

Impact of the number of cores. In Figure 15, we study the (average) energy savings
and (average and worst-case) performance degradations of FastEnergy and CoScale
running on N = 16, 32, 64, and 128 cores. Our results show that both FastEnergy
and CoScale are able to maintain the worst-case performance almost exactly within
the 10% bound. Their average energy savings are also very similar for all numbers of
cores. Interestingly, we note that, as the number of cores increases, the energy savings
from the memory subsystem decrease, while the savings from cores increase. This is
because, for large N, the memory is almost always busy (i.e., large R), leaving little
opportunity for the memory to slow down.

Algorithm overhead. In Figure 16, we plot the algorithm overhead (i.e., how long it
takes to search for the next frequency configuration) in μs for FastEnergy and CoScale,
as a function of N. Since FastEnergy’s complexity is O(MN), it scales linearly with the
number of cores, whereas CoScale scales quadratically (O(M + FN2), where F is the
number of core frequencies). In the figure, we also include FastEnergy-H, a heuristic
algorithm to further reduce the complexity of FastEnergy to O(N log M). FastEnergy-
H is based on the observation that the memory frequencies can be traversed via a
binary search for a near-optimal solution to the optimization problem (Equations (10)
to (12)). Most of the overhead in FastEnergy and FastEnergy-H is due to floating-point
computations, such as computing ẑi (line 8 in Algorithm 2).

As we simulate 5ms epochs in these results, the overhead of CoScale is more than
10% with 256 cores, which is clearly unacceptable. To amortize this overhead, we
would need substantially longer epochs, which may encompass multiple workload
behaviors and render the information collected during profiling (and the predictions
made based on it) obsolete. In contrast, FastEnergy achieves the same energy and
performance results as CoScale at a much lower overhead. FastEnergy-H performs

ACM Trans. Model. Perform. Eval. Comput. Syst., Vol. 2, No. 3, Article 17, Publication date: September 2017.

Fast Power and Energy Management for Future Many-Core Systems 17:25

Fig. 14. Frequencies selected while running MIX2. The core frequency plots the core that runs application
applu. Similar to CoScale, FastEnergy dynamically adjusts core/memory frequencies to adapt to workload
changes.

even better than FastEnergy with almost the same energy and performance. Since
M = 10 in our experiments, it is roughly 3× faster across the spectrum. Compared
to CoScale, FastEnergy-H is roughly 10× faster. In terms of energy and performance,
FastEnergy-H’s average full-system energy savings are 16.1% (vs. 16% for Fast-
Energy), and average performance degradation is 8.9% (vs. 9.2% for FastEnergy)
for our workloads on 16 cores. (Since FastEnergy-H and FastEnergy only differ
significantly in terms of algorithm overhead, we only present FastEnergy results in
our other figures.) These results demonstrate that FastEnergy and FastEnergy-H are
practical for many-core systems, whereas CoScale is not.

Impact of the epoch length. We also study the energy savings and performance
degradation under different epoch lengths (L = 5, 10, 15, and 20ms) on 64 cores.
The longer the epochs, the less frequently the frequency selection algorithm executes.
Running the algorithm less frequently may lead to worse performance for applications
that have fast-changing dynamics.

ACM Trans. Model. Perform. Eval. Comput. Syst., Vol. 2, No. 3, Article 17, Publication date: September 2017.

17:26 Y. Liu et al.

Fig. 15. FastEnergy and CoScale with N = 16, 32, 64, and 128.

Fig. 16. Algorithm overhead, as a function of core counts N.

ACM Trans. Model. Perform. Eval. Comput. Syst., Vol. 2, No. 3, Article 17, Publication date: September 2017.

Fast Power and Energy Management for Future Many-Core Systems 17:27

Fig. 17. FastEnergy for different performance bounds, N = 16.

Compared to CoScale, FastEnergy is slightly better at limiting the maximum (and
average) performance degradations as the epoch length increases. For example, for
L = 20ms, the max performance degradation is 10.9% for FastEnergy versus 12.1% for
CoScale. This is because the queuing and optimization framework used in FastEnergy
model the average behavior of the system, making it less vulnerable to fast-changing
workload dynamics. However, FastEnergy’s average energy savings are slightly lower
(16%) than those of CoScale (17.2%) for L = 20ms.

Impact of maximum allowed performance loss. Thus far, we have assumed a
performance bound of 10% (γ = 0.1). Figure 17 plots the average FastEnergy results
for different performance bounds (10%, 5%, and 1%) on 16 cores. FastEnergy adapts
to different bounds while conserving energy. For example, with a bound of just 1%,
FastEnergy conserves as much as 3.1% energy on average.

6. CONCLUSION

In this article, we proposed two algorithms for performance-aware management of ac-
tive low-power modes in many-core systems. Our first algorithm, called FastCap, max-
imizes the performance of applications under a full-system power cap, while promot-
ing fairness across applications. Our second algorithm, called FastEnergy, maximizes
the full-system energy savings under predefined application performance loss bounds.
Both algorithms embody the general queuing model and a nonlinear optimization
framework. Our results show that FastCap achieves better application performance
and fairness than prior power capping techniques for the same power budget, whereas
FastEnergy conserves more energy than prior energy management techniques for the
same performance constraint. FastCap and FastEnergy together demonstrate the ap-
plicability of the queuing model for managing the abundant active low-power modes in
many-core systems.

We leave a few directions for future work. First, it would be interesting to the-
oretically bound the worst application performance. Second, it would be helpful to
implement fine-grained tuning on the worst performing core. For example, a possible
solution could be giving extra “weights” for cores that are most underperforming in
each epoch. Finally, although this article focuses on DVFS in a single server, our queu-
ing models and optimization approach could be extended for multiserver clusters [16,
17].

ACM Trans. Model. Perform. Eval. Comput. Syst., Vol. 2, No. 3, Article 17, Publication date: September 2017.

17:28 Y. Liu et al.

7. APPENDIX

7.1. Proof of Theorem 4.1

We first show that the constraint in Equation (6) must be an equality.
Suppose otherwise, and then we can always reduce the optimal bus speed s∗

b such
that the performance of each core is improved (because of the decrease in R(s∗

b)). As a
result, we can achieve a better objective, larger than D∗. This leads to a contradiction.
Thus, the power budget constraint must be an equality.

Now, we show that the constraint in Equation (5) must also be an equality. Suppose
otherwise, that is, that there exists a j such that the constraint in Equation (5) is
strictly smaller than 1/D∗. Then, we can increase z∗

j . The power budget saved from
this core can be redistributed to other cores that have equalities in the constraint in
Equation (5). As a result, we can achieve an objective that is larger than D∗. This leads
to a contradiction as well.

7.2. Proof of Theorem 5.1

With sb fixed, the optimization problem reduces to minimizing

∑
i

(
Pi(zi)αi

zαi−1
i

)
+ 1

N

∑
i

[
Ps + Pm

(
sb

sb

)β
]

zi, (15)

subject to

QUsb + zi ≤ T ′
i ∀ i ∈ N , (16)

where T ′
i = Ti − Qsm − ci, and we have substituted R(sb) by Equation (1). The variable

constraints are

sb ≤ sb, zi ≤ zi, ∀ i ∈ N . (17)

Since each additive term in Equation (15) is convex in zi, Equation (15) itself is convex
in zi. Also since the constraints in Equations (16) and (17) are linear in zi (and thus
convex), the optimization problem is convex in zi with each fixed sb.

To solve for the optimal zi, we rely on the Karush-Kuhn-Tucker (KKT) conditions that
the optimal zi must satisfy. Since the optimization problem (Equation (15)) under the
constraints in Equations (16) and (17) is convex, the zi satisfying the KKT conditions
are the global optimal solution. The KKT conditions can be written as

Ps + Pm(sb/sb)β

N
+ λi − γi = (αi − 1)Pi(zi)αi

zαi
i

∀ i ∈ N (18)

λi(T ′
i − zi − QUsb) = 0 ∀ i ∈ N (19)

γi(zi − zi) = 0 ∀ i ∈ N (20)

zi + QUsb ≤ T ′
i ∀ i ∈ N (21)

λi, γi ≥ 0 zi ≥ zi ∀ i ∈ N . (22)

Based on these KKT conditions, we make the following observations:

1) If λi = γi = 0, then zi = ẑi provided that ẑi satisfies Equations (21) and (22). This
corresponds to lines 11 to 12 in Algorithm 2.

ACM Trans. Model. Perform. Eval. Comput. Syst., Vol. 2, No. 3, Article 17, Publication date: September 2017.

Fast Power and Energy Management for Future Many-Core Systems 17:29

2) If λi > 0 and γi = 0, then zi = T ′
i − QUsb = Ti − ci − R(sb), provided that this value

satisfies Equations (18) and (22). This corresponds to lines 13 to 14 in Algorithm 2.
3) If λi = 0 and γi > 0, then zi = zi, provided that zi satisfies Equations (18) and (21).

This corresponds to lines 15 to 16 in Algorithm 2.
4) If λi > 0 and γi > 0, then zi = zi = Ti − ci − R(sb). This corresponds to line 18 in

Algorithm 2.
5) Finally, if zi > T ′

i − QUsb, then there is no solution since the optimization is
infeasible. This corresponds to lines 9 to 10 in Algorithm 2.

As a result, the optimal zi can only take one of the three values, zi, z′
i, or ẑi, defined

in Theorem 5.1. This completes the proof.

7.3. Proof of Theorem 5.2

Note that Theorem 5.1 computes the global optimal zi for a given sb. If we exhaust all
the possible sb choices and compare the objective value, then we find a global optimal
solution to the original optimization problem (Equations (10) to (12)). This completes
the proof of Theorem 5.2.

REFERENCES

[1] D. Abts, M. R. Marty, P. M. Wells, P. Klausler, and H. Liu. 2010. Energy proportional datacenter
networks. In ACM Proceedings of International Symposium on Computer Architecture.

[2] I. F. Akyildiz. 1988. On the exact and approximate throughput analysis of closed queuing networks
with blocking. IEEE Transactions on Software Engineering 14, 1, 62–70.

[3] S. Balsamo, V. D. N. Persone, and R. Onvural. 2001. Analysis of Queuing Networks with Blocking.
Springer.

[4] N. Bansal, T. Kimbrel, and K. Pruhs. 2007. Speed scaling to manage energy and temperature. Journal
of the ACM 54, 1, Article No. 3.

[5] R. Begum, M. Hempstead, G. P. Srinivasa, and G. Challen. 2016. Algorithms for CPU and DRAM
DVFS under inefficiency constraints. In Proceedings of the IEEE International Conference on Computer
Design.

[6] R. Bergamaschi, G. Han, A. Buyuktosunoglu, H. Patel, and I. Nair. 2008. Exploring power management
in multi-core systems. In Proceedings of the ACM/EDAC/IEEE Design Automation Conference.

[7] P. Bose, A. Buyuktosunoglu, J. A. Darringer, M. S. Gupta, M. B. Healy, H. Jacobson, I. Nair, J. A. Rivers,
J. Shin, A. Vega, and A. J. Weger. 2012. Power management of multi-core chips: Challenges and pitfalls.
In Proceedings of the IEEE Design, Automation and Test in Europe.

[8] E. V. Carrera, E. Pinheiro, and R. Bianchini. 2003. Conserving disk energy in network servers. In ACM
Proceedings of International Conference on Supercomputing.

[9] J. M. Cebrian, J. L. Aragon, and S. Kaxiras. 2011. Power token balancing: Adapting CMPs to power
constraints for parallel multithreaded workloads. In Proceedings of the IEEE International Parallel
and Distributed Processing Symposium.

[10] M. Chen, X. Wang, and X. Li. 2011. Coordinating processor and main memory for efficient server power
control. In Proceedings of the ACM International Conference on Supercomputing.

[11] H. David, C. Fallin, E. Gorbatov, U. Hanebutte, and O. Mutlu. 2011. Memory power management via
dynamic voltage/frequency scaling. In Proceedings of the ACM International Conference on Autonomic
Computing.

[12] M. Dayarathna, Y. Wen, and R. Fan. 2015. Data center energy consumption modeling: A survey. In
IEEE Communications Surveys & Tutorials.

[13] Q. Deng, D. Meisner, A. Bhattacharjee, T. F. Wenisch, and R. Bianchini. 2012. CoScale: Coordinating
CPU and Memory DVFS in server systems. In Proceedings of IEEE/ACM International Symposium on
Microarchitecture.

[14] Q. Deng, D. Meisner, L. Ramos, T. F. Wenisch, and R. Bianchini. 2011. MemScale: Active low-power
modes for main memory. In Proceedings of the ACM International Conference on Architectural Support
for Programming Languages and Operating Systems.

[15] X. Fan, C. S. Ellis, and A. R. Lebeck. 2003. The synergy between power-aware memory systems and pro-
cessor voltage scaling. In Proceedings of the ACM International Conference on Power-Aware Computer
Systems.

ACM Trans. Model. Perform. Eval. Comput. Syst., Vol. 2, No. 3, Article 17, Publication date: September 2017.

17:30 Y. Liu et al.

[16] A. Gandhi and M. Harchol-Balter. 2011. How data center size impacts the effectiveness of dynamic
power management. In Proceedings of the IEEE Allerton Conference on Communication, Control, and
Computing.

[17] A. Gandhi, M. Harchol-Balter, R. Raghunathan, and M. A. Kozuch. 2012. AutoScale: Dynamic, robust
capacity management for multi-tier data centers. ACM Transactions on Computer Systems 30, 4, Article
No. 14.

[18] S. Gurumurthi, A. Sivasubramaniam, M. Kandemir, and H. Franke. 2003. DRPM: Dynamic speed con-
trol for power management in server class disks. In Proceedings of the ACM International Symposium
on Computer Architecture.

[19] M. Harchol-Balter. 2013. Performance Modeling and Design of Computer Systems: Queueing Theory in
Action. Cambridge University Press.

[20] S. Herbert and D. Marculescu. 2007. Analysis of dynamic voltage/frequency scaling in chip-
multiprocessors. In Proceedings of the IEEE/ACM International Symposium on Low Power Electronics
and Design.

[21] C. Isci, A. Buyuktosunoglu, C.-Y. Cher, P. Bose, and M. Martonosi. 2006. An analysis of efficient multi-
core global power management policies: Maximizing performance for a given power budget. In Proceed-
ings of IEEE/ACM International Symposium on Microarchitecture.

[22] JEDEC. 2009. DDR3 SDRAM Standard. (2009).
[23] W. Kim, M. S. Gupta, G.-Y. Wei, and D. Brooks. 2008. System level analysis of fast, per-core DVFS using

on-chip switching regulators. In Proceedings of the IEEE Symposium on High Performance Computer
Architecture.

[24] X. Li, R. Gupta, S. Adve, and Y. Zhou. 2007. Cross-component energy management: Joint adaptation of
processor and memory. ACM Transactions on Architecture and Code Optimization 4, 3, Article No. 14.

[25] X. Li, Z. Li, F. M. David, P. Zhou, Y. Zhou, S. V. Adve, and S. Kumar. 2004. Performance-directed
energy management for main memory and disks. In Proceedings of the ACM International Conference
on Architectural Support for Programming Languages and Operating Systems.

[26] Y. Liu, G. Cox, Q. Deng, S. C. Draper, and R. Bianchini. 2016. FastCap: An efficient and fair algorithm
for power capping in many-core systems. In Proceedings of the IEEE International Symposium on
Performance Analysis of Systems & Software.

[27] Y. Liu, S. C. Draper, and N. S. Kim. 2013. Queuing theoretic analysis of power-performance tradeoff in
power-efficient computing. In Proceedings of the IEEE Conference on Information Sciences and Systems.

[28] Y. Liu, S. C. Draper, and N. S. Kim. 2014. SleepScale: Runtime joint speed scaling and sleep states
management for power efficient data centers. In Proceedings of the ACM International Symposium on
Computer Architecture.

[29] K. Ma, X. Li, M. Chen, and X. Wang. 2011. Scalable power control for many-core architectures run-
ning multi-threaded applications. In Proceedings of the ACM International Symposium on Computer
Architecture.

[30] D. Meisner, C. M. Sadler, L. A. Barroso, W.-D. Weber, and T. F. Wenisch. 2011. Power management
of online data-intensive services. In Proceedings of the ACM International Symposium on Computer
Architecture.

[31] K. Meng, R. Joseph, R. P. Dick, and L. Shang. 2008. Multi-optimization power management for chip
multiprocessors. In Proceedings of the ACM International Conference on Parallel Architectures and
Compilation.

[32] Micron. 2007. DDR3 SDRAM System-Power Calculator. Retrieved from http://tinyurl.com/hcddfw5.
[33] A. K. Mishra, S. Srikantaiah, M. Kandemir, and C. R. Das. 2010. CPM in CMPs: Coordinated power

management in chip multiprocessors. In Proceedings of the ACM/IEEE International Conference for
High Performance Computing, Networking, Storage and Analysis.

[34] H. Sasaki, A. Buyuktosunoglu, A. Vega, and P. Bose. 2016. Mitigating power contention: A scheduling
based approach. In IEEE Computer Architecture Letters.

[35] J. Sharkey, A. Buyuktosunoglu, and P. Bose. 2007. Evaluating design tradeoffs in on-chip power man-
agement for CMPs. In Proceedings of IEEE/ACM International Symposium on Low Power Electronics
and Design.

[36] V. Spiliopoulos, S. Kaxiras, and G. Keramidas. 2011. Green governors: A framework for continuously
adaptive DVFS. In Proceedings of the IEEE International Green Computing Conference.

[37] R. Teodorescu and J. Torrellas. 2008. Variation-aware application scheduling and power management
for chip multiprocessors. In ACM Proceedings of International Symposium on Computer Architecture.

[38] A. Wierman, L. L. H. Andrew, and A. Tang. 2012. Power-aware speed scaling in processor sharing
systems. In Performance Evaluation, Vol. 69. 601–622.

ACM Trans. Model. Perform. Eval. Comput. Syst., Vol. 2, No. 3, Article 17, Publication date: September 2017.

http://tinyurl.com/hcddfw5

Fast Power and Energy Management for Future Many-Core Systems 17:31

[39] H. Wong. 2012. A Comparison of Intel’s 32nm and 22nm Core i5 CPUs: Power, Voltage, Temperature,
and Frequency. Retrieved from http://tinyurl.com/z7rxjy3.

[40] Q. Wu, Q. Deng, L. Ganesh, C.-H. Hsu, Y. Jin, S. Kumar, B. Li, J. Meza, and Y. J. Song. 2016. Dynamo:
Facebook’s data center-wide power management system. In Proceedings of the ACM International
Symposium on Computer Architecture.

[41] G. Yan, Y. Li, Y. Han, X. Li, M. Guo, and X. Liang. 2012. AgileRegulator: A hybrid voltage regulator
scheme redeeming dark silicon for power efficiency in a multicore architecture. In Proceedings of the
IEEE Symposium on High Performance Computer Architecture.

[42] H. Zheng, J. Lin, Z. Zhang, and Z. Zhu. 2009. Decoupled DIMM: Building high-bandwidth memory sys-
tem using low-speed DRAM devices. In Proceedings of the ACM International Symposium on Computer
Architecture.

Received September 2016; revised January 2017; accepted April 2017

ACM Trans. Model. Perform. Eval. Comput. Syst., Vol. 2, No. 3, Article 17, Publication date: September 2017.

http://tinyurl.com/z7rxjy3

