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Abstract—Recent studies on commercial hardware demon-
strated that irregular GPU applications can bottleneck on virtual-
to-physical address translations. In this work, we explore ways
to reduce address translation overheads for such applications.

We discover that the order of servicing a GPU’s address trans-
lation requests (specifically, page table walks) plays a key role in
determining the amount of translation overhead experienced by
an application. We find that different SIMD instructions executed
by an application require vastly different amounts of work to
service their address translation needs, primarily depending upon
the number of distinct pages they access. We show that better
forward progress is achieved by prioritizing translation requests
from the instructions that require less work to service their
address translation needs.

Further, in the GPU’s Single-Instruction-Multiple-Thread
(SIMT) execution paradigm, all threads that execute in lockstep
(wavefront) need to finish operating on their respective data
elements (and thus, finish their address translations) before the
execution moves ahead. Thus, batching walk requests originating
from the same SIMD instruction could reduce unnecessary stalls.
We demonstrate that the reordering of translation requests based
on the above principles improves the performance of several
irregular GPU applications by 30% on average.

Index Terms—Computer architecture; GPU; Virtual address.

I. INTRODUCTION

GPUs have emerged as a first-class computing platform. The

massive data parallelism of GPUs had first been leveraged by

highly-structured parallel tasks such as matrix multiplications.

However, GPUs have more recently found use across a broader

range of application such as graph analytics, deep learning,

weather modeling, data analytics, computer-aided-design, oil

and gas exploration, medical imaging, and computational

finance [1]. Memory accesses from many of these emerging

applications demonstrate a larger degree of irregularity –

accesses are less structured and are often data dependent.

Consequently, they show low spatial locality [2], [3], [4].

Irregular memory accesses can be particularly harmful

to the GPU’s Single-Instruction-Multi-Threaded (SIMT) ex-

ecution paradigm where typically 32 to 64 threads (also

called workitems) execute in a lockstep fashion (referred

to as wavefronts or warps) [4], [5], [6], [7], [8], [9], [10].

When a wavefront issues a SIMD memory instruction (e.g.,

load/store), the instruction cannot complete until data for all

1Authors contributed as interns in AMD Research.
2The author primarily contributed when he was a member of AMD Research.

workitems in the wavefront are available. This is not a problem

for well-structured parallel programs with regular memory

access patterns where workitems in a wavefront typically

access cache lines from only one or a few unique pages. The

GPU hardware exploits this to gain efficiency by coalescing

multiple accesses into a single access. For irregular applications,

however, memory accesses of workitems within a wavefront

executing the same SIMD memory instruction can access

different cache lines from different pages. This leaves little

scope for coalescing and leads to memory access divergence
– i.e., execution of a single SIMD instruction could require

multiple cache accesses (when accesses fall on distinct cache

lines) [7], [8], [9], [10] and multiple virtual-to-physical address

translations (when accesses fall on distinct pages) [5], [11].
A recent study on real hardware demonstrated that such

divergent memory accesses can slow down an irregular GPU

application by up to 3.7-4× due to address translation over-

heads alone [5]. The study found that the negative impact of

divergence could be greater on address translation than on the

caches. Compared to one memory access on a cache miss, a

miss in the TLB1 triggers a page table walk that could take up

to four sequential memory accesses in the prevalent x86-64 or

ARM architectures. Further, cache accesses cannot start until

the corresponding address translation completes as modern

GPUs tend to employ physical caches.
In this work, we explore ways to reduce address translation

overheads of irregular GPU applications. While previous studies

in this domain primarily focused on the design of TLBs,

page table walkers, and page walk caches [12], [13], [11],

we show that the order in which page table walk requests are
serviced is also critical. We demonstrate that better scheduling

of page table walks can speed up applications by 30% over

a baseline first-come-first-serve (FCFS) approach. In contrast,

naive random scheduling can slow applications down by 26%,

underscoring the need of a good schedule for page table walks.
We observe that page walk scheduling is particularly impor-

tant for a GPU’s SIMT execution. An irregular application with

divergent memory accesses can generate multiple uncoalesced

address translation requests while executing a single SIMD

memory instruction. For a typical 32-64 wide wavefront,

1Translation Lookaside Buffer or TLB is a cache of address translation
entries. A hit in the TLB is fast, but a miss triggers long-latency page table
walk to locate the desired address translation from an in-memory page table.
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execution of a single SIMD memory instruction by a wavefront

can generate between 1 to 32 or 64 address translation requests.

Due to the lack of sufficient spatial locality in such irregular

applications, these requests often miss in TLBs, each generating

a page table walk request. Furthermore, servicing a page table

walk requires anything between one to four sequential memory

accesses. Consequently, servicing address translation needs of a

single SIMD memory instruction can require between 0 to 256

memory accesses. In the presence of such a wide variance in the

amount of work (quantified by the number of memory accesses)

required to complete address translation for an instruction, we

propose a SIMT-aware page walk scheduler that prioritizes

walk requests from instructions that would require less work.

This aids forward progress by allowing wavefronts with less

address translation traffic to complete faster.

Further, page walk requests generated by a single SIMD

instruction often get interleaved with requests from other

concurrently executing instructions. Interleaving occurs as

multiple independent streams of requests percolate through

a shared TLB hierarchy. However, in a GPU’s SIMT execution

model, it does not help a SIMD instruction to make progress if

only a subset of its page walk requests is serviced. Therefore,

servicing page walk requests in a simple first-come-first-serve

(FCFS) order can impede the progress of wavefronts. Our

proposed scheduler thus also batches requests from the same

SIMD instruction for them to be serviced temporally together.

The SIMT-aware scheduler speeds up a set of irregular GPU

applications by 30%, on average, over FCFS.

To summarize, we make two key contributions:

• We demonstrate that the order of servicing page table

walks significantly impacts the address translation over-

head experienced by irregular GPU applications.

• We then propose a SIMT-aware page table walk scheduler

that speeds up applications by up to 41%.

II. BACKGROUND AND THE BASELINE

This work builds upon two aspects of a GPU’s execution: the

GPU’s Single-Instruction-Multiple-Thread (SIMT) execution

hierarchy, and the GPU’s virtual-to-physical address translation

mechanism.

A. Execution Hierarchy in a GPU

GPUs are designed for massive data-parallel processing

that concurrently operates on hundreds to thousands of data

elements. To keep this massive parallelism tractable, a GPU’s

hardware resources are organized in a hierarchy. The top of

Figure 1 depicts the architecture of a typical GPU.

Compute Units (CUs) are the basic computational blocks of

a GPU, and typically there are 8 to 64 CUs in a GPU. Each

CU includes multiple Single-Instruction-Multiple-Data (SIMD)

units, each of which has multiple lanes of execution (e.g., 16).

A SIMD unit executes a single instruction across all its lanes

in parallel, but each lane operates on a different data item.

A GPU’s memory resources are also arranged in a hierarchy.

Each CU has a private L1 data cache and a scratchpad that

are shared across the SIMD units only within the CU. When
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Fig. 1: Baseline system architecture.

several data elements accessed by a SIMD instruction reside

in the same cache line, a hardware coalescer combines these

requests into single cache access to gain efficiency. Finally, L1

caches are followed by an L2 cache that is shared across all

CUs in a GPU.

GPGPU programming languages, such as OpenCL [14] and

CUDA [15], expose to the programmer a hierarchy of execution

groups that follows the hierarchy in the hardware resources.

A workitem is akin to a CPU thread and is the smallest

execution entity that runs on a single lane of a SIMD unit. A

group of workitems, typically 32 to 64, forms a wavefront

and is the smallest hardware-scheduled unit of work. All

workitems in a wavefront execute the same SIMD instruction

in a lockstep fashion but can operate on different data elements.

An instruction completes execution only when all workitems in

that wavefront finish processing their respective data elements.

The next level in the hierarchy is the programmer-visible

workgroup that typically comprises tens of wavefronts. Finally,

work on a GPU is dispatched at the granularity of a kernel,

comprised of several workgroups.

B. Virtual Address Translation in GPUs

As GPUs outgrow their traditional “co-processor” model to

become first-class compute citizens, several key programmabil-

ity features are making their way into mainstream GPUs. One

such key feature is shared virtual memory (SVM) across the

CPU and the GPU [16], [17]. For example, compliance with

industry-promoted standards like the Heterogeneous System

Architecture (HSA) requires SVM [17].
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The bottom part of Figure 1 depicts the key hardware

components of a typical SVM implementation in an HSA-

enabled GPU. Conceptually, the key enabler for SVM in such

a design is the GPU’s ability to walk the same four-level x86-64

page table as the CPU. A page table is an OS-maintained data

structure that maps virtual addresses to physical addresses at a

page granularity (typically, 4KB). The IO Memory Management

Unit (IOMMU) is the key component that enables a GPU to

walk x86-64 page tables. While we focus this study on the

SVM implementation mentioned above, our proposal is likely

to be more broadly applicable to any GPU designs with virtual

memory, not only to those supporting SVM. Next, we detail

how an HSA-enabled GPU performs address translation.

GPU TLB Hierarchy: Just like in a CPU, the GPU’s

TLBs cache recently-used address translation entries to avoid

accessing in-memory page tables on every memory access. Each

CU has a private L1 TLB shared across the SIMD units. When

multiple data elements accessed by a SIMD instruction reside

on the same page, only a single virtual-to-physical address

translation is needed. This is exploited by a hardware coalescer

to lookup the TLB only once for such same page accesses.

The GPU’s L1 TLBs are typically backed by a larger L2 TLB

that is shared across all the CUs in the GPU (bottom portion

of Figure 1) [12], [11]. A translation request that misses in the

GPU’s TLB hierarchy is sent to the IOMMU [5]

IOMMU and Page Table Walkers: The IOMMU is the

hardware component in the CPU complex that services address

translation requests for accesses to the main memory (DRAM)

by any device or accelerator, including that of the GPU [18],

[19], [5]. The IOMMU itself has two levels of TLBs, but they

are relatively small and designed to primarily serve devices

that do not have their own TLBs (e.g., NIC). The IOMMU’s

page table walkers, however, play an essential role in servicing

the GPU’s address translation requests. Upon a TLB miss, a

page table walker walks an in-memory x86-64 page table to

locate the desired virtual-to-physical address mapping.

An IOMMU typically supports multiple independent page

table walkers (e.g., 8-16) to concurrently service multiple page

table walk requests (TLB misses) [5]. Multiple walkers are

important for good performance because GPUs demand high

memory bandwidth and consequently, often send many walk

requests to the IOMMU.

The translation requests that miss in the TLB hierarchy

queue up in the IOMMU’s page walk request buffer (in short,

IOMMU buffer). When a page table walker becomes free (e.g.,

after it finishes servicing a page walk), it could start servicing

a new request from the IOMMU buffer in the order it arrived.

Later in this work, we will demonstrate that such an FCFS

policy for selecting page table walk requests is not well-aligned

with a GPU’s SIMT execution model.

Another important optimization that the IOMMU borrows

from the CPU’s MMU design is the page table walk caches [5],

[20], [21]. Nominally, a page table walk requires four memory

accesses to walk an x86-64 page table, structured as a four-level

radix tree. To reduce this, the IOMMU employs small caches

for the first three levels of the page tables. These specialized

caches are collectively called page walk caches (PWCs). Hits

in PWCs can reduce the number of memory accesses needed

for a walk to anything from one to three, depending upon

which intermediate level produces the hit. For example, a hit

for the entire top three levels will need one memory request to

complete the walk by accessing only the leaf level. In contrast,

a hit for only the root level requires three memory accesses.

A complete miss in PWCs however, requires four accesses.

Putting it together: Life of a GPU Address Translation
Request: 1 An address translation request is generated when

executing a SIMD memory instruction (load/store). 2 A

coalescer merges multiple requests to the same page (e.g., 4KB)

generated by the same SIMD instruction. 3 The coalesced

translation request looks up the GPU’s L1 TLB and then the

GPU’s shared L2 (if L1 misses). 4 On a miss in the GPU’s

L2 TLB, the request is sent to the IOMMU. 5 Upon arrival

at the IOMMU, the request looks up the IOMMU’s TLBs. 6

On a miss, the request queues up as a page walk request in

the IOMMU buffer. 7 When an IOMMU’s page table walker

becomes free, it typically selects a pending request from the

IOMMU buffer in FCFS order. 8 The page table walker first

performs a PWC lookup and then completes the walk of the

page table, generating one to four memory accesses. 9 On

finishing a walk, the desired translation is returned to the TLBs

and ultimately to the SIMD unit that requested it.

III. THE NEED FOR SMARTER SCHEDULING OF PAGE

TABLE WALKS

Irregular GPU applications often make data-dependent

memory accesses with little spatial locality [2], [3]. This causes

memory access divergence in the GPU’s SIMT execution model

where different workitems within a wavefront access data

on distinct pages. The hardware coalescer is ineffective in

such cases as several different address translation requests

are generated by the execution of a single SIMD memory

instruction. These requests then look up TLBs but often miss

there owing to less locality in irregular applications. Eventually,

many of these requests queue up in the IOMMU buffer to be

serviced by a page table walker.

A recent study on commercial GPU hardware demonstrated

that such divergent access can slowdown irregular GPU applica-

tions by up to 3.7-4× due to address translation overheads [5].

In this work, we aim to reduce address translation overheads

for such irregular GPU applications.

We discover that the order in which page table walks are ser-
viced can significantly impact the address translation overheads

experienced by an irregular GPU application. While better

page table walk scheduling (ordering) can potentially improve

performance, poor scheduling (e.g., random scheduling) can

be similarly detrimental. Figure 2 shows the extent by which

scheduling of page table walks can impact performance on a set

of representative irregular applications (methodology is detailed

in Section V-A). The figure shows speedups of each application

while employing naive random scheduler2, the baseline FCFS,

2As its name suggests, the random policy randomly picks a pending page
walk request to service from the IOMMU buffer.
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Fig. 2: Performance impact of page walk scheduling.

and the proposed SIMT-aware page walk scheduler. Each bar

in the cluster shows the speedup of an application with a given

scheduler, normalized to that with random scheduler. While

we will detail our SIMT-aware scheduling over the next two

sections, the key message conveyed by the figure is that the

performance of an application can differ by more than 2.1×
due to the difference in the schedule of page table walks. This

underscores the importance of exploring the scheduling of a

GPU’s page walk requests.

A keen reader will notice the parallel between the scheduling

of page table walks and the scheduling of memory (DRAM)

accesses at the memory controller [22], [23], [24], [25]. The

existence of a rich body of research on memory controller

scheduling suggests that there exist opportunities for follow-on

work to explore different flavors of page walk scheduling for

both performance and QoS.

In the rest of this section, we discuss why page table walk

scheduling affects performance and then provide empirical

analysis to motivate better scheduling of GPU page walks.

A. Shortest-job-first Scheduling of Page Table Walks

We observe that instructions issued by a wavefront require

different amounts of work to service their address translation

needs. There are two primary reasons for this. First, the number

of page table walks generated due to the execution of a single

SIMD memory instruction can vary widely based on how many

distinct pages the instruction accesses and the TLB hits/misses

it generates. In the best case, all workitems in a wavefront

access data on the same page and the perfectly coalesced

translation request hits in the TLB. No page walks are necessary

in that case. At the other extreme, a completely divergent SIMD

instruction can generate page table walk requests equal to the

number of workitems in the wavefront (here, 64). Second,

each page walk may itself need anywhere between one to four

memory requests to complete. This happens due to hits/misses

in page walk caches (PWCs) that store recently-used upper-

level entries of four-level page tables (detailed in Section II).

Figure 3 shows the distribution of the number of memory

accesses required to service address translation needs of SIMD

instructions for a few representative applications. The x-axis

shows buckets for the number of memory accesses needed by

a SIMD memory instruction to service its address translation

needs. The y-axis shows the fraction of instructions issued by
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Fig. 3: Distribution of number of memory accesses (i.e.,‘work’)

for servicing address translation needs of SIMD instructions.

the application that fall into the corresponding x-axis buckets.

We excluded instructions that did not request any page table

walks. We find that often between 27-61% of the instructions

needed one to sixteen memory accesses to complete all the

page table walks it generated. On the other hand, more than

33-70% of the instructions required forty-nine or more memory

accesses. One of the applications (GEV) had close to 31% of

instructions requiring sixty-five or more memory accesses. In

summary, we observe that the amount of work (quantified by

the number of memory accesses) required to service the address

translation needs of an instruction varies significantly.

It is well studied in scheduling policies across various fields

that in the presence of “jobs” of different lengths, if a longer

job can delay a shorter job, then it impedes overall progress.

This leads to the widely employed “shortest-job-first” (SJF)

policy that prioritizes shorter jobs over longer ones [26]. By

analogy, we posit that servicing all page table walks generated

due to the execution of a single instruction should be treated

as a single “job” because the instruction cannot complete until

all those walks are serviced. Figure 3 demonstrates that the

“length” of such jobs, as quantified by the number of memory

accesses, vary significantly.

Key idea 1 : Following the wisdom of time-tested SJF

policies, we propose to prioritize the servicing of page table

walk requests from instructions requiring fewer memory

requests to complete their address translation needs over those

requiring larger number of memory accesses.

B. Batch-scheduling of Page Table Walk Requests

Owing to the GPU’s SIMT execution model, all page table

walks generated by a single SIMD instruction must complete

before the instruction can finish execution. The performance

is thus determined by when the last of those walk requests is

serviced. Even servicing all but one walk request does not aid

progress.

Figure 4a illustrates how the progress of two SIMD in-

structions, load A and load B, issued by two wavefronts

are impaired if their page table walk requests are interleaved.

Both load A and load B generate multiple walk requests

and both experience stalls due to the latency to service walk

183



CU 1CU 0

Use A

stall

stall

stall

stall

IOMMU Buffer

load A

Time

load B

stall

load A - req 0

load B - req 0

load B - req 1

stall

stall

stall

stall

stall

stall
load A - req 1

load B - req 2

load B - req 3

load A - req 2

load B - req 4

stall

stall

stall

stall

stall

stall

stall

stall
Time

Use BRequests service order

Page Table Walkers

(a) Interleaving of page walk requests with hurts progress.

CU 1CU 0

Use A

stall

stall

stall

stall

IOMMU Buffer

load A

Time

load B

load A - req 0

load B - req 0

load B - req 1

stall

stall

stall

stall

stall

stall

load A - req 1

load B - req 2

load B - req 3

load A - req 2

load B - req 4

stall

stall

stall

stall

stall
Time

Use BRequests service order

Page Table Walkers

(b) Batching of page walk requests reduces interleaving.

Fig. 4: Impact of interleaving of a GPU’s page walk requests.
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requests generated by the other. Evidently, if interleaved page

walk requests are serviced in the FCFS order, then it delays

completion of both load A and load B since both need all

their walk requests to finish before the instruction can progress.

This inefficiency exacerbates if walk requests from a larger

number of distinct instructions interleave since the progress of

every instruction involved in the interleaving suffer.

Unfortunately, such interleaving among page walk requests

from different SIMD instructions happens fairly regularly.

Figure 5 quantifies how often such interleaving happens for

representative irregular GPU workloads (methodology detailed

in Section V-A). The y-axis shows the fraction of executed

memory instructions whose page walk requests interleave with

requests from at least another instruction. We exclude any

instructions that do not generate at least two page table walks

as interleaving is impossible for them. We observe that 45-77%

of such instructions have their walk requests interleaved.

We traced the source of this interleaving to the GPU’s shared

L2 TLB. The shared L2 TLB receives multiple independent

streams of address translation requests generated by L1 TLB

misses from concurrently executing wavefronts across different

CUs. These requests can then miss in the L2 TLB and travel to

the IOMMU. The IOMMU thus receives a multiplexed stream
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page walk request per instruction.

of walk requests from different wavefronts.

A reasonable question to ask is how much does this

interleaving potentially impact the performance? Figure 6 shows

the potential performance cost of interleaving. The figure shows

the average latencies experienced by the first- and the last-

completed page walk requests from the same SIMD memory

instruction. The latencies are normalized to the average latency

experienced by the first completed walk request. We exclude

instructions that do not generate at least two page walk requests

as they cannot interleave. Larger the latency gap, the more

time an instruction potentially stalls for all of its page walk

requests to complete. We observe that often the latency of

the last completed walk is more than 2-3× that of the first

completed page walk. This suggests that the interleaving of

page walks can significantly impede forward progress.

Ideally, page walk requests should be scheduled to minimize

such latency gaps. A smarter scheduler thus should strive to

achieve a schedule as shown in Figure 4b by batching page

walk requests from the same instruction. We see from the figure

that load A can potentially complete much earlier without

further delaying load B in Figure 4a.

Key idea 2 : A smart scheduler should batch page walk

requests from the same instruction to minimize interleaving
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due to walk requests from other instructions.

IV. DESIGN AND IMPLEMENTATION

Driven by the above analyses, we propose a SIMT-aware
page table walk scheduler in the IOMMU. Figure 7 shows

some of the key components and actions in the IOMMU to

realize such a scheduler. When an IOMMU’s page table walker

becomes available to accept a new request, the scheduler selects

which pending page walk request is serviced next. While we

introduce a specific scheduler design, there could be several

other potential designs that build upon our observations about

the importance of page table walk scheduling.

Our proposed SIMT-aware scheduler follows the two key

ideas mentioned in the previous section. At a high level, the

scheduler first attempts to schedule a pending page walk request

(in the IOMMU buffer) issued by the same SIMD instruction

as the most recently scheduled page walk. If none exists, it

schedules a request issued by an instruction that is expected

to require the least number of memory requests (i.e., work)

to service all its walk requests. For this purpose, we assign

a score to each page walk request. This score estimates the

number of memory requests that would be required to complete

all page walk requests of the issuing instructions. The score

is thus the same for all pending page walk requests generated

by a given SIMD instruction. A lower value indicates fewer

memory requests to service an instruction’s page walk requests.

We make a few simple hardware modifications to realize

the above design concept. First, each page walk request

from the GPU is attached with an instruction ID (20 bits

in our implementation). Correspondingly, the buffer holding

the pending page walk requests at the IOMMU is extended

with this ID. As shown in Figure 7, we then modify how the

IOMMU behaves when 1 a new page walk request arrives at

the IOMMU, and when 2 a hardware page walker becomes

available to accept a new request. Below we detail actions

taken during these two events.

1 Arrival of a new page walk request: If there is

an idle hardware page walker when a new request arrives

then it starts walking immediately. Otherwise, we assign an

integer score (between 1 to 256, where 256 corresponds to the

maximum possible number of memory accesses required if all

64 workitems need four memory accesses each to perform their

respective translation) to the newly-arrived request. The score

estimates the number of memory accesses needed to complete

all page walk requests of the corresponding instruction. This is

done in two steps. First, the new request looks up the PWCs

to estimate the number of memory requests that this request

alone may need to get serviced (action 1-a in Figure 7). This

number can be between one (on a hit in all upper-levels in the

PWC and thus, requiring only single memory access to the

leaf-level of the page table) to four (on a complete miss in

the PWC requiring the full walk of the four-level page table).

Since the PWC contents could change by the time the scheduler

selects the request, this number is an estimate of the actual

number of memory accesses required to service the walk.

Second, we then scan all the pending page walk requests in

the IOMMU buffer to find any matching page walk requests

issued by the same instruction as the newly arrived one (1-b).

All requests from the same SIMD instruction have the same

score. A new score is computed by adding the PWC-based

score of the newly-arrived request to the previous score of an

existing request in the IOMMU buffer that is issued by the

same instruction. This updated score now represents the total

estimated number of memory accesses required to service all
the translation requests from the issuing SIMD instruction. All

entries in the IOMMU that match the SIMD instruction of the

newly-arrived request (including the newly-arrived request) are

then updated with this new score.

2 A hardware page walker becomes ready: When a page

walk finishes, the corresponding page table walker becomes

available to start servicing a new request. The scheduler decides

which of the pending page walk requests (if any) it should

service next. First, the scheduler scans the buffer of pending

page walks to find any request that matches the instruction

ID of the most recently issued page walk request (2-a). If

such a request exists, it is chosen to ensure temporal batching

of page walks issued by the same SIMD instruction. If no

such matching request is found, then the scheduler selects a

request with the lowest score. This follows the second key idea –

schedule requests from the instruction that is expected to require

the fewest memory accesses. Both actions are performed during

the scanning of pending page walk requests (1-a). Finally, the

selected page walk request is serviced as usual by first looking

up the PWC for partial hits and then completing the walk of

the page table (2-b).

Putting it all together: To summarize, an address translation

from the GPU flows as follows. The coalescing and lookups

in the GPU TLBs happen as before (refer to Section II-B for

steps). The only modification for our scheduler is that each
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request now carries the ID of the instruction that generated

it. As in the baseline, a translation request that misses in the

GPU TLBs is sent to the IOMMU where it performs a lookup

in the IOMMU’s TLBs. If the request misses in all the TLBs,

then it is inserted into the IOMMU buffer. If any of the page

table walkers (8 in the baseline) are available, then one of

them starts the page walk process. Otherwise, our scheduler

calculates a score for the newly-arrived request and re-scores

any of the already-pending requests from the same instruction

as detailed above (actions 1-a and 1-b). The request then

waits in the buffer until it is selected by the scheduler.

When a page table walker finishes a walk, the scheduler

selects which request it should service next. The scheduler

scans pending requests in the IOMMU buffer (action 2-a) to

find if there are any requests issued by the same instruction

as the last-scheduled request. If so, the oldest among such

requests is chosen. If not, the scheduler selects the request

with the lowest score (oldest first in the case of a tie). Once a

request is scheduled, the page table walker proceeds walking

as usual – it looks up the PWC for partial hits before making

memory accesses to the page table (2-b).

Design Subtleties: We now discuss a few intricacies of this

design. First, note that the scanning of the pending page walk

requests upon arrival of a new request is not in the critical path.

The newly arrived request anyway queues up in the IOMMU

buffer for the scheduler to select it. If a free page table walker

is immediately available, the scheduler plays no role and no

scanning is involved. However, it adds an extra latency in the

critical path of servicing a new page walk request when the

scheduler scans the pending request (2-a). Every such request

in the IOMMU buffer has already suffered a long latency miss

through the entire TLB hierarchy, and a walk itself requires

hundreds of cycles. Therefore, the latency of scanning pending

requests adds little additional delay.

As with any scheduler, the above design is susceptible

to starvation. We implement an aging scheme whereby we

prioritize pending walk requests that have been passed by

a large number of younger requests (in our experiments, we

found that setting this threshold to two million requests worked

well to avoid any potential starvation).

As briefly mentioned earlier, another subtlety is that the

PWC contents may change between the time a request arrives

at the IOMMU and the time the scheduler selects that request.

This could lead to inaccuracies in estimating the number of

memory accesses needed to service a page walk since the

score is calculated when the request arrives. Unfortunately, it

is infeasible for the scheduler to re-calculate scores of every

pending request at the time of request selection. This would

have added significant latency in the critical path. Instead,

we reduce this potential inaccuracy by adding 2-bit saturating

counters to the entries of the PWC. Whenever a lookup for

a newly-arrived request hits in the page walk cache (1-a
in Figure 7), the counters of the corresponding entries are

incremented. The counters are decremented when a selected

page walk request hits in the PWC (2-b). Thus, a value

greater than zero indicates that there exists at least one pending

TABLE I: The baseline system configuration.

GPU 2GHz, 8 CUs, 4 SIMD per CU
16 SIMD width, 64 threads per wavefront

L1 Data Cache 32KB, 16-way, 64B block
L2 Data Cache 4MB, 16-way, 64B block
L1 TLB 32 entries, Fully-associative
L2 TLB 512 entries, 16-way set associative
IOMMU 256 buffer entries, 8 page table walkers

32/256 entries for IOMMU L1/L2 TLB,
FCFS scheduling of page walks

DRAM DDR3-1600 (800MHz), 2 channel
16 banks per rank, 2 ranks per channel

TABLE II: GPU benchmarks for our study.

Benchmark
(Abbrev.)

Description Memory
Footprint

Ir
re

g
u
la

r
ap

p
li

ca
ti

o
n
s

Xsbench
(XSB)

Monte Carlo neutronics application 212.25MB

MVT (MVT) Matrix vector product and transpose 128.14MB
ATAX (ATX) Matrix transpose and vector multiplica-

tion
64.06MB

NW (NW) Optimization algorithm for DNA se-
quence alignments

531.82MB

BICG (BCG) Sub kernel of BiCGStab linear solver 128.11MB
GESUMMV
(GEV)

Scalar, vector and matrix multiplication 128.06MB

R
eg

u
la

r
ap

p
li

ca
ti

o
n

SSSP (SSP) Shortest path search algorithm 104.32MB
MIS (MIS) Maximal subset search algorithm 72.38MB
Color (CLR) Graph coloring algorithm 26.68MB
Back Prop.
(BCK)

Machine learning algorithm 108.03MB

K-Means
(KMN)

Clustering algorithm 4.33MB

Hotspot
(HOT)

Processor thermal simulation algorithm 12.02MB

page walk request in the IOMMU buffer that would later hit

in the page walk cache when that request is scheduled. The

replacement policy in the page walk cache is then modified

to avoid replacing an entry with a counter value greater than

zero. If all entries in a set have value greater than zero, then a

conventional pseudo-LRU policy selects a victim as usual.

V. EVALUATION

We now describe our evaluation methodology and then

analyze the results in detail.

A. Methodology

We used the execution-driven gem5 simulator that models a

heterogeneous system with a CPU and an integrated GPU [27].

We heavily extended the gem5 simulator to incorporate a de-

tailed address translation model for a GPU including coalescers,

the GPU’s TLB hierarchy, and the IOMMU. Inside the newly-

added IOMMU module, we model a two-level TLB hierarchy,

multiple independent page table walkers, and page walk caches

to closely mirror the real hardware. We implemented different

scheduling policies for page table walks, including our novel

SIMT-aware page walk scheduler inside the IOMMU module.

The simulator runs unmodified applications written in

OpenCL [14] or in HCC [28]. Table I lists the relevant

parameters for the GPU, the memory system, and the address
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Fig. 8: Speedup with SIMT-aware page walk scheduler.

translation mechanism of the baseline system. Section V-B2

also presents sensitivity studies varying key parameters.

Table II lists the applications used in our study with descrip-

tions of each workload and their respective memory footprints.

We draw applications from various benchmark suites includ-

ing Polybench [29] (MVT, ATAX, BICG, and GESUMMV),

Rodinia [30] (NW, Back propagation, K-Means, and

Hotspot), and Pannotia [31] (SSSP, MIS, and Color).

In addition, we used a proxy-application released by the US

Department of Energy (XSBench [32]).

In this work, we focus on emerging GPU applications with

irregular memory access patterns. These applications demon-

strate memory access divergence [2], [3] that can bottleneck

a GPU’s address translation mechanism [5]. However, not

every application we studied demonstrates irregularity nor

suffers from significant address translation overheads. We

find that six workloads (XSB, MVT, ATX, NW, BCG, and

GEV) demonstrate irregular memory access behavior while the

remaining workloads (SSP, MIS, CLR, BCK, KMN, and

HOT) have fairly regular memory accesses. Applications with

regular memory accesses show little translation overhead to

start with and thus, offer little scope for improvement. Our

evaluation thus focuses on applications in the first category, but

we include results for the regular applications to demonstrate

that our proposed techniques do not harm workloads that are

insensitive to translation overheads.

B. Results and Analysis

We evaluate the impact of page table walk scheduling and

our SIMT-aware scheduler by asking the following questions:

1 How much does the SIMT-aware page table walk scheduler

speed up applications over the baseline FCFS scheduler? 2
What are the sources of speedups (if any)? 3 How sensitive

are the results to configuration parameters like the TLB size

and the number of page table walkers?

Figure 8 shows the speedups of GPU applications with our

SIMT-aware page walk scheduler over FCFS. The left half

of the figure (dark bars) shows the speedups for irregular

applications while the right half (thatched bars) shows the

speedups for applications with regular memory accesses. We

observe that our scheduler speeds up irregular GPU applications
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Fig. 9: GPU stall cycles in execution stage.

by up to 41%, and by 30% on average (geometric mean). On the

other hand, there is little change in the performance of regular

applications. This is expected; regular applications experience

little address translation overhead, and thus page table walk

scheduling has almost no influence on their performance. The

data, however, assure that the SIMT-aware scheduling does not

hurt regular workloads.

Previously in Figure 2 in Section III, we also demonstrated

how naive random scheduling can significantly hurt perfor-

mance. Together, these observations show that 1 different

scheduling of page walks can have severe performance impli-

cations, and 2 the SIMT-aware scheduler can significantly

speed up irregular GPU applications without hurting others.

1) Analyzing Sources of Speedup: It is important to un-

derstand the reasons behind the observed speedups. Toward

this, we first present how schedulers impact GPU stall cycles,

which are the cycles during which a CU cannot execute

any instructions because none are ready. Figure 9 shows the

normalized stall cycles for each application with our SIMT-

aware page table walk scheduler. The height of each bar is

normalized to the stall cycles with the FCFS scheduler. A

lower number indicates better forward progress since CUs

are stalled for less time on average. As before, the left half

shows the results for irregular applications and the right half

shows those for regular applications. We observe that the SIMT-

aware scheduler reduces the stall cycles by 23% on average

(up to 29%) for irregular applications. This shows how the

scheduler enables instructions, and consequently, corresponding

wavefronts, to make better forward progress. This ultimately

leads to faster execution. As expected, the stall cycles for

regular applications remain mostly unchanged. Because these

applications neither alter performance nor provide any new

insights, the remaining evaluations in this paper focus entirely

on irregular applications.

In Figure 6 (Section III), we showed that there can be a

significant gap between the latency of the first- and the last-

completed page walk for a given SIMD instruction. A larger

gap indicates that instructions are waiting for a large number

of translation requests to be completed, or a few requests to be

completed but that are delayed due to the servicing requests

from other instructions, or a combination of both effects. Our
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page walk request per instruction.
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Fig. 11: Number of page walk requests with SIMT-ware

scheduler normalized over FCFS.

SIMT-aware scheduler batches the servicing of page table walk

requests from the same instruction to reduce this gap. Figure 10

shows the degree of effectiveness of our scheduler in reducing

the gap. Each bar represents the latency gap between the first-

and the last-completed page walk requests from an instruction

with our scheduler. The height of each bar is normalized to

the latency gap with the baseline FCFS scheduler. As before,

we exclude instructions that generate less than two page table

walks as they cannot interleave. We observe that the SIMT-

aware scheduler reduces the latency gap by 37% over FCFS,

on average. This shows the efficacy of batching page walks.

Another interesting performance impact of our scheduler

is that it also reduced the total number of page table walk

requests. Figure 11 shows the number of page walk requests

(i.e., number of TLB misses) with our SIMT-aware scheduler,

normalized to the baseline FCFS scheduler.

We observed 21% reduction (up to 30%) in the number of

page table walk requests, on average. We traced the reason for

this improvement to the better exploitation of intra-wavefront

locality in TLBs. Our scheduler favors SIMD instructions

with lower address translation needs, which in turn aids

forward progress. At the same time, our scheduler also tends

to delay page walk requests from instructions that generate

a large amount of address translation traffic. These high-

overhead instructions are anyway likely to take a long time to

complete. While the translation-heavy instructions are stalled,

they are kept away from polluting (thrashing) the GPU’s TLBs.

Consequently, the low-overhead instructions experience higher

TLB hit rates as the useful TLB entries are not evicted by the

high-overhead instructions. This results in a reduction in the

number of TLB misses and thus, reduce the number of page

walk requests.
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Fig. 12: Number of active wavefronts accessing the GPU’s L2

TLB with SIMT-aware scheduler (normalized over FCFS).

We further validated the above conjecture by counting

the number of distinct wavefronts that access the GPU’s L2

TLB over fixed-sized epochs (we used an epoch length of

1024 GPU L2 TLB accesses). Figure 12 presents this metric

(normalized to FCFS), averaged over all epochs for the SIMT-

aware scheduler. We observed a 42% reduction in the number

of distinct wavefronts accessing the GPU’s L2 TLB in an epoch.

This shows the role of page walk scheduling in lowering the

contention in the GPU’s L2 TLB. Consequently, the number

of page table walks decreases due to less potential thrashing in

the TLB. This behavior has similarities to phenomena observed

by others in the context of the GPU’s caches [33].

2) Sensitivity Analysis: We measured sensitivity of the

scheduler to the GPU’s L2 TLB size, the number of concurrent

page table walkers, and the size of IOMMU buffer holding the

pending page walk requests.

Figure 13 shows the speedup achieved by our SIMT-aware

scheduler with varying amounts of critical address translation

resources: L2 TLB capacity and the number of page table

walkers. Figure 13a shows the speedup with 1024 entries in

L2 TLB and eight page table walkers. The average speedup

achieved by the SIMT-aware scheduler over the FCFS scheduler

is significant (on average, 25%) even with larger TLB. It is,

however, slightly less than 30% speedup achieved with 512-

entry L2 TLB. The larger TLB reduces the number of page

walk requests and thus, the scope for improving performance

by scheduling page walks diminishes.

On the other hand, figure 13b shows the speedups with 16

page table walkers. Increasing the number of page table walkers

reduces the number of pending page table walks as the effective

address translation bandwidth increases. This also reduces

headroom for the performance improvement achievable through

better page walk scheduling. We observe that SIMT-aware page

walk still speeds up applications by about 8.4% over the FCFS

policy. Finally, figure 13c shows the combined impact of both

the bigger TLB size and the increased page table walker count.

In this configuration, both the increased TLB resources and

the increased number of page table walkers further moderate

scope for the improvement with smarter scheduling of walks.

SIMT-aware scheduling speeds up applications by 5.3% in this

configuration.

Overall, our SIMT-aware scheduler consistently performs

better than the baseline FCFS scheduler across different

configurations and different workloads, thereby demonstrating
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(a) 1024 L2 TLB and 8 walkers.

0.8

0.9

1

1.1

1.2

1.3

XSB MVT ATX NW BIC GEV Mean

Sp
ee

du
p 

ov
er

 F
CF

S

(b) 512 L2 TLB and 16 walkers.
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(c) 1024 L2 TLB and 16 walkers.

Fig. 13: Speedups with varying GPU L2 TLB size and page table walker counts.
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(a) 128 IOMMU buffer entries.
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(b) 512 IOMMU buffer entries.

Fig. 14: Speedups with varying IOMMU buffer size.

the robustness of our technique, although the amount of benefit

depends on the severity of address translation bottleneck.

We then investigate the effect of IOMMU buffer size on

our scheduler. The IOMMU buffer size determines the size of

the lookahead for the scheduler, i.e., the maximum number

of page walk requests from which it can select a request.

Larger the buffer size, the larger is the lookahead potential.

Figures 14a and 14b show speedups with SIMT-aware scheduler

over the FCFS scheduler with 128-entry and 512-entry IOMMU

buffers, respectively. All other parameters remain the same

as in the baseline configuration. A smaller IOMMU buffer

size reduces the opportunity for a scheduler to make smart

reordering decisions, and thus, the speedups due to SIMT-

aware scheduling are reduced to 13% (Figure 14a) with a

128-entry buffer. On the other hand, if the size of the buffer is

increased to 512 entries, the average speedup jumps to 50%

(Figure 14b). In short, the magnitude of the performance benefit

from SIMT-aware scheduling varies across configurations but

remains substantial across all cases.

VI. DISCUSSION

Why not large pages? Large pages map larger ranges

of contiguous virtual addresses (e.g., 2MB) to contiguous

physical addresses. They can reduce the number of TLB

misses by mapping more of memory with the same number of

TLB entries. However, large pages are far from a panacea

as decades of deployment and studies in the CPU world

have demonstrated [34], [35], [36]. As memory footprints of

applications continue to grow, today’s large page effectively

becomes tomorrow’s small page. Thus, techniques that help

improve performance with small (base) pages remain useful

for future workloads with larger memory footprints, even with

larger page sizes. Even workloads with memory footprints of a

few hundred MBs (Table II) can benefit significantly from our

SIMT-aware page walk scheduler, and workloads with more

realistic footprints will continue to benefit from more efficient

page walk scheduling, even with large pages. Unfortunately,

exorbitant simulation time prevents us from evaluating such

large memory footprint.

More importantly, irregular GPU applications tend to exhibit

low spatial locality [2], [3] where large pages tend to have

limited benefits. These applications see less benefit from large

pages because the approach fundamentally relies on locality

to enhance the reach of TLBs [34]. Previous works further

demonstrated that large pages can even hurt performance in

some cases due to the relatively lower number of entries in

large page TLBs [37], [34]. Recent works on GPUs have also

demonstrated that large pages can significantly increase the

overhead of demand paging for GPUs [38], [13].

Interactions with Other Schedulers: In a GPU, wave-

front (warp) schedulers play an important role in leveraging

parallelism and impact cache behavior [39], [7]. Previous

work has also shown the importance of TLB-aware wavefront

scheduling [11]. Apart from the wavefront scheduler, memory

controllers sport sophisticated scheduling algorithms to improve

performance and fairness [2], [40]. A reasonable question to ask

is how these schedulers interact with the page walk scheduler.

Page walk schedulers play an important role in reducing

address translation overheads, which none of these other sched-

ulers aim to do. Thus, even in the presence of sophisticated

wavefront and memory controller schedulers, we expect that

improvements to page walk scheduling will still be useful. The

page walk scheduler is unlikely to have significant interactions
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with the memory schedulers as the maximum amount of

memory traffic from the page walk schedulers would still only

consume a relatively small fraction of a GPU’s total memory

bandwidth. That said, there still could be opportunities for

better coordination among the different schedulers, but we

leave such explorations for future work.

VII. RELATED WORK

Three research domains are related to this work: TLB

management, scheduling in memory controllers, and work

scheduling in GPUs.

A. TLB Management

The emergence of shared virtual memory (SVM) between

the CPU and the GPU as a key programmability feature in a

heterogeneous system has made an efficient virtual-to-physical

address translation for GPUs a necessity. Lowe-Power et al. [12]

and Pichai et al. [11] were among the first to explore designs

GPU MMU. Lowe-Power et al. demonstrated that coalescer,

shared L2 TLB and multiple independent page walkers are

essential components of an efficient GPU MMU design. Their

design is similar to our baseline configuration. On the other

hand, Pichai et al. showed the importance of making wavefront

(warp) scheduler to be TLB-aware.

More recently, Vesely et al. demonstrated on real hardware,

that a GPU’s translation latencies can be much longer than that

of a CPU’s and GPU applications with memory access diver-

gence may bottleneck due to address translation overheads [5].

Cong et al. proposed TLB hierarchy similar to our baseline

but additionally proposed to use a CPU’s page table walkers

for GPUs [41]. However, accessing CPU page table walkers

from a GPU could be infeasible in a real hardware due to

longer latencies. Lee et al. proposed a software managed virtual

memory to provide an illusion of a large memory by partitioning

GPU programs to fit into the physical memory space [42].

Ausavarungnirun et al. showed that address translation overhead

could be even larger in the presence of multiple concurrent

applications on a GPU [13]. They selectively bypassed TLBs

to avoid thrashing and prioritizing address translation over

data access to reduce overheads. Yoon et al. demonstrated the

significance of address translation overheads in the performance

of GPU applications and proposed to employ virtual caches for

GPUs to defer address translation only after a cache miss [43].

Different from these works, we demonstrate the importance

of (re-)ordering page table walk requests and designed a SIMT-

aware page table walk scheduler. Most of these works are either

already part of our baseline (e.g., [12]) and/or are largely

orthogonal to ours (e.g., [13]).

Address translation overheads are well studied in CPUs.

To exploit page localities among threads, Bhattacharjee et

al. proposed inter-core cooperative TLB prefetchers [44].

Pham et al. proposed to exploit naturally occurring contiguity

to extend effective reach of TLB [45]. Bhattacharjee later

proposed shared PWCs and efficient page table designs to

increase PWCs hits [20]. Cox et al. have proposed MIX TLBs
that support different page sizes in a single structure [37].

Barr et al. proposed SpecTLB that speculatively predicts

address translations to avoid the TLB miss latency. Several

others proposed to leverage segments to selectively bypass

TLB and the cost of TLB misses [34], [35], [36]. While some

of these techniques can be extended to GPUs, page table walk

scheduling is orthogonal to them. Basu et al. and Karakostas

et al. also proposed ways to reduce energy dissipation in a

CPU’s TLB hierarchy [46], [47].

B. Scheduling in Memory Controllers

Memory bandwidth has become a potential performance

limiter with the emergence of large multi-cores and GPUs [48].

Rixner et al. introduced early memory scheduling policies

to exploit memory parallelism for better performance [22].

Chatterjee et al. proposed staged reads that parallelize read

and write requests through two staged read operations and

scheduling of writes to take advantage of them [49]. Yoongu

et al. introduced ATLAS that prioritizes threads with least

serviced at the memory controller during an epoch [23].

A GPU’s SIMT execution exacerbates memory bandwidth

bottleneck [50]. Ausavarungnirun et al. proposed staged mem-

ory scheduling to exploit locality by batching row buffer hit

requests [24]. Chatterjee et al. proposed a memory scheduler

batching requests from the same wavefronts to solve memory

access divergence [51]. Our SIMT-aware scheduler bears

similarity with this work as we also batch requests but in the

context of page walks. Further, Li et al. proposed to prioritize

memory accesses with higher inter-core locality [25].

The fairness of resource sharing is also important in

presence of multiple contenders. Mutlu et al. proposed STFM
that estimates the slowdown of threads due to sharing the

DRAM and prioritizes requests from the slowest thread [52].

PAR-BS provides QoS by batching and scheduling requests

from the same thread [40]. Yoongu et al. proposed TCM that

groups threads with similar memory access patterns and apply

different scheduling policies for different groups [53]. Jog

et al. proposed to allocate fair memory bandwidth among

concurrently executing kernels on different CUs in a GPU [54].

Jeong et al. proposed a QoS-aware scheduling that prioritizes

CPUs with low latency while guaranteeing QoS of GPUs [55].

Usui et al. proposed DASH that considers the deadline for

accelerators instead of always prioritizing CPU workloads [56].

These works focus solely on memory (DRAM), and not on

page table walks. However, the existence of such a rich body

of work shows the potential of significant follow-on research

in exploring various policies for page table walk scheduling

for both performance and QoS.

C. Work Scheduling in GPUs

Smart scheduling of work in the GPU’s compute units has

been widely investigated, too. Rogers et al. proposed CCWS that

limits the number of active wavefronts on computer units if it

detects thrashing on L1 cache [39]. The authors then extended

it considering L1 cache usage in wavefront scheduling to reduce

the impact of memory access divergence [7]. Li et al. extended

CCWS to also allow bypassing the L1 cache for selected
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wavefronts when shared resources have additional headroom

after limiting wavefronts [33]. Kayrian et al. dynamically

throttled parallelism in CUs based on application characteristics

and contention in the memory subsystem [57]. Unlike these

works, we focus on page table walk scheduling. However, an

interesting future study could explore interactions between

page walk scheduling and scheduling at CUs.

VIII. CONCLUSION

We demonstrate the importance of reordering page table

walk requests for GPUs. The impact of this reordering is

particularly severe for irregular GPU applications that suffer

from significant address translation overheads. We observed

that different SIMD memory instructions executed by a GPU

application could require vastly different numbers of memory

accesses (work) to service their page table walk requests.

Our SIMT-aware page table walk scheduler prioritizes page

table walks from instructions that require less work to service

and further batches page walk requests from the same SIMD

instruction to reduce GPU-level stalls. These lead to 30%

performance improvement for irregular GPU applications

through improved forward progress. While we here proposed a

specific SIMT-aware scheduler to demonstrate how better page

table walk scheduling is valuable, we believe there exists scope

for significant follow-on research on page walk scheduling

akin to the rich body of work in memory controller scheduling.
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